bookingsky.ru

Что называется электромагнитными волнами. Что такое электромагнитные волны? Особенности электромагнитных волн

Про букмекерскую контору 1xbet не слышал только ленивый. Грамотная рекламная компания и огромный перечень событий для ставок сделали свое дело. На сегодняшний день 1xbet — это один из самых пропиаренных и крупных букмекеров по всей стране. По проведенным статистическим данным, 1xbet является самой узнаваемой букмекерской конторой. Уже сотни тысяч пользователей выбрали эту контору. И их число возрастает с каждым днем.

О зеркале 1xbet

Перейти на зеркало

Многие пользователи до сих пор не знают, что такое зеркала. На самом деле это распространенное понятие среди пользователей букмекерской конторы. Зеркало — это просто-напросто копия официального сайта букмекера. Не случайно дано название «Зеркало БК». По сути, это полное копирование основного сайта со всем функционалом и возможностями. Практику создания зеркал используют многие игорные заведения.

Подобные копии называются «Зеркала БК», поскольку они являются полным отражением основного сайта. Зеркала используют не только букмекерские конторы, но и другие игровые ресурсы.

Рабочее зеркало 1xbet находится всегда в свободном доступе. Оно не скрыто от глаз пользователя. Ссылок на рабочие зеркала очень много. Администрация конторы выпускает новые домены чуть ли не каждый день, словно из-под конвейера. Поэтому дефицита в зеркальных сайтах нет.

Почему блокируют основной сайт букмекерской конторы 1хбет

Блокировка букмекерских контор и прочих игорных сайтов происходит периодически. Вследствие ужесточения российских законов, многие сайты были заблокированы интернет-провайдерами. Роскомнадзор старается массово ограничить доступ к игровым сайтам. Причем доступ к букмекеру не запрещен. Блокируется только домен, а ограничений к самому ресурсу 1xbet нет.

От этих законов страдают многие заведения. И 1xbet не стал счастливым исключением. Поэтому администрация 1xbet провела вынужденные меры. Этими мерами и являются зеркальные сайты.

Зеркала также постоянно блокируются. Именно поэтому так часто администрация создает новые зеркала. Таким образом, пользователь не потеряет доступ к сайту и сможет делать ставки в любое время, несмотря на запреты российских провайдеров.

Регистрация на зеркале 1хбет

Процесс регистрации на зеркале схож с регистрацией на основном сайте. Существует несколько способов заведения учетной записи на сайте 1xbet

  • По электронной почте. Данная форма регистрации является расширенной. И, помимо адреса электронного ящика, пользователь должен указать свой город, имя, рабочий номер телефона, индекс и придумать надежный пароль.
  • По номеру мобильного телефона. Очень простой и быстрый способ регистрации. Пользователю достаточно указать свой номер, на который придет смс-сообщение с последующими данными, необходимыми для регистрации
  • Привязка аккаунта к страничке в соц.сетях. Самый популярный метод регистрации на многих сайта. 1xbet также предлагает такой способ обзавестись учетной записью на их сайте. Необходимо указать логин и пароль от выбранной соц.сети и аккаунт на бк будет создан.

Если учетная запись на официальном сайте 1xbet уже имеется, то нет нужды создавать новую для зеркала. Достаточно ввести свои старые данные, актуальные для основного сайта.

Владимирский областной
промышленно – коммерческий
лицей

р е ф е р а т

Электромагнитные волны

Выполнил:
ученик 11 «Б» класс
Львов Михаил
Проверил:

Владимир 2001г.

1. Вступление ……………………………………………………… 3

2. Понятие волна и ее характеристики…………………………… 4

3. Электромагнитные волны……………………………………… 5

4. Экспериментальное доказательство существования
электромагнитных волн………………………………………… 6

5. Плотность потока электромагнитного излучения ……………. 7

6. Изобретение радио …………………………………………….… 9

7. Свойства электромагнитных волн ………………………………10

8. Модуляция и детектирование…………………………………… 10

9. Виды радиоволн и их распространение………………………… 13

Вступление

Волновые процессы чрезвычайно широко распространены в природе. В природе существует два вида волн: механические и электромагнитные. Ме­ханические волны распространяются в веществе: газе, жидкости или твердом теле. Электромагнитные волны не нуждаются в каком-либо веществе для своего распростра­нения, к которым, в частности, от­носятся радиоволны и свет. Электромагнитное поле может су­ществовать в вакууме, т. е. в пространстве, не содержащем ато­мов. Несмотря на существенное отличие электромагнитных волн от механических, электромагнитные волны при своем распростра­нении ведут себя подобно механическим. Но подобно колебаниям все виды волн описываются количественно одинаковыми или почти одинаковыми законами. В своей работе я постараюсь рассмотреть причины возникновения электромагнитных волн, их свойства и применение в нашей жизни.

Понятие волна и ее характеристики

Волной называют колебания, распростра­няющиеся в пространстве с течением времени.

Важнейшей ха­рактеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна.

При распространении механической волны движе­ние передается от одного участка тела к другому. С передачей движения связана передача энергии. Ос­новное свойство всех волн незави­симо от их природы состоит в пере­носе ими анергии без переноса вещества. Энергия поступает от источ­ника, возбуждающего колебания на­чала шнура, струны и т. д., и распро­страняется вместе с волной. Через любое поперечное сечение непрерывно течет энергия. Эта энергия слагается из кинети­ческой энергии движения участков шнура и потенциальной энергии его упругой деформации. Постепенное уменьшение амплитуды колебаний, при распространении волны связано с превращением части механической энергии во внутреннюю.

Если заставить конец растянутого резинового шнура колебаться гармонически с опреде­ленной частотой v, то эти колеба­ния начнут распространяться вдоль шнура. Колебания любого участка шнура происходят с той же часто­той и амплитудой, что и колебания конца шнура. Но только эти колеба­ния сдвинуты по фазе друг относи­тельно друга. Подобные волны назы­ваются монохроматическими .

Если сдвиг фаз между колеба­ниями двух точек шнура равен 2п, то эти точки колеблются совершенно одинаково: ведь соs(2лvt+2л) = =соs2п vt . Такие колебания назы­ваются синфазными (происходят в одинаковых фазах).

Расстояние между ближайшими друг к другу точками, колеблющими­ся в одинаковых фазах, называется длиной волны.

Связь между длиной волны λ, частотой v и скоростью распростра­нения волны c. За один период ко­лебаний волна распространяется на расстояние λ. Поэтому ее скорость определяется формулой

Так как период Т и частота v свя­заны соотношением T = 1 / v

Скорость волны равна произведению длины волны на частоту колебаний.

Электромагнитные волны

Теперь перейдем к рассмотрению непосредственно электромагнитных волн.

Фунда­ментальные законы природы могут дать гораздо боль­ше, чем заключено в тех фактах, на основе которых они получены. Одним из таких относятся открытые Макс­веллом законы электромагнетизма.

Среди бесчисленных, очень инте­ресных и важных следствий, выте­кающих из максвелловских законов электромагнитного поля, одно заслу­живает особого внимания. Это вы­вод о том, что электромагнитное взаимодействие распространяется с конечной скоростью.

Согласно теории близкодействия Перемещение заряда меняет электрическое поле вблизи него. Это переменное электрическое поле порождает переменное магнитное поле в соседних областях пространства. Переменное же магнитное поле в свою очередь порождает переменное электрическое поле и т. д.

Перемещение заряда вызывает, таким образом, «всплеск» электро­магнитного поля, который, распространяясь, охватывает все большие области окружающего пространства.

Максвелл математически дока­зал, что скорость распространения этого процесса равна скорости све­та в вакууме.

Пред­ставьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой. Тогда элек­трическое поле в непосредственной близости от заряда начнет периоди­чески изменяться. Период этих изме­нений, очевидно, будет равен периоду колебаний заряда. Переменное элек­трическое поле будет порождать пе­риодически меняющееся магнитное поле, а последнее в свою очередь вызовет появление переменного элек­трического поля уже на большем расстоянии от заряда и т.д.

В каждой точке пространства электрические и магнитные поля ме­няются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее ко­лебания полей. Следовательно, на разных расстояниях от заряда коле­бания происходят с различными фа­зами.

Направления колеблющихся век­торов напряженности электрическо­го поля и индукции магнитного по­ля перпендикулярны к направлению распространения волны.

Электромагнитная волна является поперечной.

Электромагнитные волны излу­чаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со временем, т. е. что они движутся с ускорением. Наличие ускорения - главное условие излучения электро­магнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости. Интенсивность излу­ченной волны тем больше, чем боль­ше ускорение, с которым движется заряд.

Максвелл был глубоко убежден в реальности электромагнитных волн. Но он не дожил до их эксперимен­тального обнаружения. Лишь через 10 лет после его смерти электро­магнитные волны были экспериментально получены Герцем.

Экспериментальное доказательство существования

электромагнитных волн

Электромагнитные волн не видны в отличие от механических, но тогда как же они были обнаружены? Для ответа на этот вопрос рассмотрим опыты Герца.

Электромагнитная волна образу­ется благодаря взаимной связи переменных электрических и магнитных полей. Изменение одного поля при­водит к появлению другого. Как известно, чем быстрее меня­ется со временем магнитная индук­ция, тем больше напряженность воз­никающего электрического поля. И в свою очередь, чем быстрее меняется напряженность электрического поля, тем больше магнитная индукция.

Для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты.

Колебания высокой частоты можно получить с помощью колебательного контура. Частота колебаний равна 1/ √ LС. От сюда видно, что она будет тем больше, чем меньше индуктивность и емкость контура.

Для получения электромагнитных волн Г. Герц использовал простое устройство, называемое сейчас вибратором Герца.

Это устройство представляет собой открытый колебательный контур.

К открытому контуру можно перейти от закрытого, если постепенно раздвигать пластины конденсатора, уменьшая их площадь и одновременно уменьшая число вит­ков в катушке. В конце концов, полу­чится просто прямой провод. Это и есть открытый колебательный кон­тур. Емкость и индуктивность вибратора Герца малы. Поэтому частота колебаний весьма велика.


В открытом контуре заряды не сосредоточены на концах, а распределены по всему проводнику. Ток в данный момент времени во всех сечениях проводника направлен в одну и ту же сторону, но сила тока неодинакова в различных сечениях проводника. На концах она равна нулю, а посредине достигает макси­мума (в обычных же цепях переменного тока сила тока во всех сечениях в данный момент вре­мени одинакова.) Электромагнитное поле также охватывает все пространство возле контура.

Герц получал элек­тромагнитные волны, возбуждая в вибраторе с помощью источника вы­сокого напряжения серию импульсов быстропеременного тока. Колебания электрических зарядов в вибраторе создают электромагнитную волну. Только колебания в вибраторе совер­шает не одна заряженная частица, а огромное число электронов, дви­жущихся согласованно. В электро­магнитной волне векторы Е и В пер­пендикулярны друг другу. Вектор Е лежит в плоскости, проходящей че­рез вибратор, а вектор В перпенди­кулярен этой плоскости. Излучение волн происходит с максимальной ин­тенсивностью в направлении, перпен­дикулярном оси вибратора. Вдоль оси излучения не происходит.

Электромагнитные волны реги­стрировались Герцем с помощью приемного вибратора (резонатора), представляющего собой такое же устройство, как и излучающий вибра­тор. Под действием переменного электрического поля электромагнит­ной волны в приемном вибраторе возбуждаются колебания тока. Если собственная частота приемного ви­братора совпадает с частотой элек­тромагнитной волны, наблюдается резонанс. Колебания в резонаторе происходят с большой амплитудой при расположении его параллельно излучающему вибратору. Герц обнаруживал эти колебания, наблюдав искорки в очень маленьком промежутке между проводниками приемного вибратора. Герц не только получил электромагнитные волны, но и обнаружил, что они ведут себя подобно другие видам волн.

Электромагнитные волны (таблица которых будет приведена ниже) представляют собой возмущения магнитных и электрических полей, распределяющиеся в пространстве. Их существует несколько типов. Изучением этих возмущений занимается физика. Электромагнитные волны образуются из-за того, что электрическое переменное поле порождает магнитное, а оно, в свою очередь, порождает электрическое.

История исследований

Первые теории, которые можно считать самыми старыми вариантами гипотез об электромагнитных волнах, относятся как минимум к временам Гюйгенса. В тот период предположения достигли выраженного количественного развития. Гюйгенс в 1678-м году выпустил в некотором роде "набросок" теории - "Трактат о свете". В 1690-м он же издал другой замечательный труд. В нем была изложена качественная теория отражения, лучепреломления в том виде, в котором она и сегодня представлена в школьных учебниках ("Электромагнитные волны", 9 класс).

Вместе с этим был сформулирован принцип Гюйгенса. С его помощью появилась возможность изучать движение фронта волны. Этот принцип впоследствии нашел свое развитие в трудах Френеля. Принцип Гюйгенса-Френеля имел особую значимость в теории дифракции и волновой теории света.

В 1660-1670-е годы большой экспериментальный и теоретический вклад внесли в исследования Гук и Ньютон. Кто открыл электромагнитные волны? Кем были проведены опыты, доказывающие их существование? Какие существуют виды электромагнитных волн? Об этом далее.

Обоснование Максвелла

Прежде чем говорить о том, кто открыл электромагнитные волны, следует сказать, что первым ученым, который вообще предсказал их существование, стал Фарадей. Свою гипотезу он выдвинул в 1832-м году. Построением теории впоследствии занимался Максвелл. К 1865-му году он завершил эту работу. В результате Максвелл строго оформил теорию математически, обосновав существование рассматриваемых явлений. Им же была определена скорость распространения электромагнитных волн, совпадавшая с применявшимся тогда значением световой скорости. Это, в свою очередь, позволило ему обосновать гипотезу о том, что свет является одним из типов рассматриваемых излучений.

Экспериментальное обнаружение

Теория Максвелла нашла свое подтверждение в опытах Герца в 1888-м году. Здесь следует сказать, что немецкий физик проводил свои эксперименты, чтобы опровергнуть теорию, несмотря на ее математическое обоснование. Однако благодаря своим опытам Герц стал первым, кто открыл электромагнитные волны практически. Кроме того, в ходе своих экспериментов ученый выявил свойства и характеристики излучений.

Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные потоки можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют - "вибратор Герца". Приспособление представляет собой колебательный контур открытого типа.

Схема опыта Герца

Регистрация излучений осуществлялась при помощи приемного вибратора. Это устройство имело такую же конструкцию, что и излучающий прибор. Под влиянием электромагнитной волны электрического переменного поля в приемном устройстве происходило возбуждение токового колебания. Если в этом приборе его собственная частота и частота потока совпадали, то появлялся резонанс. В результате возмущения в приемном устройстве происходили с большей амплитудой. Обнаруживал их исследователь, наблюдая искорки между проводниками в небольшом промежутке.

Таким образом, Герц стал первым, кто открыл электромагнитные волны, доказал их способность хорошо отражаться от проводников. Им было практически обосновано образование стоячего излучения. Кроме того, Герц определил скорость распространения электромагнитных волн в воздухе.

Изучение характеристик

Электромагнитные волны распространяются почти во всех средах. В пространстве, которое заполнено веществом, излучения могут в ряде случаев распределяться достаточно хорошо. Но при этом они несколько изменяют свое поведение.

Электромагнитные волны в вакууме определяются без затуханий. Они распределяются на любое, сколь угодно большое расстояние. К основным характеристикам волн относят поляризацию, частоту и длину. Описание свойств осуществляется в рамках электродинамики. Однако характеристиками излучений некоторых областей спектра занимаются более конкретные разделы физики. К ним, например, можно отнести оптику.

Исследованием жесткого электромагнитного излучения коротковолнового спектрального конца занимается раздел высоких энергий. С учетом современных представлений динамика перестает являться самостоятельной дисциплиной и объединяется со в одной теории.

Теории, применяемые при изучении свойств

Сегодня существуют различные методы, способствующие моделированию и исследованию проявлений и свойств колебаний. Наиболее фундаментальной из проверенных и завершенных теорий считается квантовая электродинамика. Из нее посредством тех или других упрощений становится возможным получить перечисленные ниже методики, которые широко используются в различных сферах.

Описание относительно низкочастотного излучения в макроскопической среде осуществляется при помощи классической электродинамики. Она основана на уравнениях Максвелла. При этом в прикладных применениях существуют упрощения. При оптическом изучении используется оптика. Волновая теория применяется в случаях, когда некоторые части оптической системы по размерам приближены к длинам волн. Квантовая оптика используется, когда существенными являются процессы рассеяния, поглощения фотонов.

Геометрическая оптическая теория - предельный случай, при котором допускается пренебрежение длиной волны. Также существует несколько прикладных и фундаментальных разделов. К ним, к примеру, относят астрофизику, биологию зрительного восприятия и фотосинтеза, фотохимию. Как классифицируются электромагнитные волны? Таблица, наглядно изображающая распределение на группы, представлена далее.

Классификация

Существуют частотные диапазоны электромагнитных волн. Между ними не существует резких переходов, иногда они перекрывают друг друга. Границы между ними достаточно условны. В связи с тем, что поток распределяется непрерывно, частота жестко связывается с длиной. Ниже представлены диапазоны электромагнитных волн.

Ультракороткие излучения принято разделять на микрометровые (субмиллиметровые), миллиметровые, сантиметровые, дециметровые, метровые. Если электромагнитного излучения меньше метра, то ее принято называть колебанием сверхвысокой частоты (СВЧ).

Виды электромагнитных волн

Выше представлены диапазоны электромагнитных волн. Какие существуют виды потоков? Группа включает в себя гамма- и рентгеновские лучи. При этом следует сказать, что ионизировать атомы способен и ультрафиолет, и даже видимый свет. Границы, в которых находятся гамма- и рентгеновские потоки, определяются весьма условно. В качестве общей ориентировки принимаются пределы 20 эВ - 0.1 Мэв. Гамма-потоки в узком смысле испускаются ядром, рентгеновские - электронной атомной оболочкой в процессе выбивания с низколежащих орбит электронов. Однако данная классификация неприменима к жестким излучениям, генерируемым без участия ядер и атомов.

Рентгеновские потоки формируются при замедлении заряженных быстрых частиц (протонов, электронов и прочих) и вследствие процессов, которые происходят внутри атомных электронных оболочек. Гамма-колебания возникают в результате процессов внутри ядер атомов и при превращении элементарных частиц.

Радиопотоки

За счет большого значения длин рассмотрение этих волн допускается осуществлять, не учитывая атомистическое строение среды. В качестве исключения выступают лишь самые короткие потоки, которые примыкают к инфракрасной области спектра. В радиодиапазоне квантовые свойства колебаний проявляются достаточно слабо. Тем не менее их необходимо учитывать, например, при анализе молекулярных стандартов времени и частоты во время охлаждения аппаратуры до температуры в несколько кельвинов.

Квантовые свойства принимаются во внимание и при описании генераторов и усилителей миллиметрового и сантиметрового диапазонов. Радиопоток формируется во время движения переменного тока по проводникам соответствующей частоты. А проходящая электромагнитная волна в пространстве возбуждает соответствующий ей. Данное свойство применяется при конструировании антенн в радиотехнике.

Видимые потоки

Ультрафиолетовое и инфракрасное видимое излучение составляет в широком смысле слова так называемый оптический участок спектра. Выделение этой области обуславливается не только близостью соответствующих зон, но и аналогичностью приборов, используемых при исследовании и разработанных преимущественно во время изучения видимого света. К ним, в частности, относятся зеркала и линзы для фокусирования излучений, дифракционные решетки, призмы и прочие.

Частоты оптических волн сравнимы с таковыми у молекул и атомов, а длины их - с межмолекулярными расстояниями и молекулярными размерами. Поэтому существенными в этой области становятся явления, которые обусловлены атомистической структурой вещества. По той же причине свет вместе с волновыми обладает и квантовыми свойствами.

Возникновение оптических потоков

Самым известным источником является Солнце. Поверхность звезды (фотосфера) имеет температуру 6000° по Кельвину и излучает ярко-белый свет. Наивысшее значение непрерывного спектра располагается в "зеленой" зоне - 550 нм. Там же находится максимум зрительной чувствительности. Колебания оптического диапазона возникают при нагревании тел. Инфракрасные потоки поэтому также именуют тепловыми.

Чем сильнее происходит нагревание тела, тем выше частота, где располагается максимум спектра. При определенном повышении температуры наблюдается каление (свечение в видимом диапазоне). При этом сначала появляется красный цвет, затем желтый и далее. Создание и регистрация оптических потоков может происходить в биологических и химических реакциях, одна из которых применяется в фотографии. Для большинства существ, живущих на Земле, в качестве источника энергии выступает фотосинтез. Эта биологическая реакция протекает в растениях под влиянием оптического солнечного излучения.

Особенности электромагнитных волн

Свойства среды и источник оказывают влияние на характеристики потоков. Так устанавливается, в частности, временная зависимость полей, которая определяет тип потока. К примеру, при изменении расстояния от вибратора (при увеличении) радиус кривизны становится больше. В результате образуется плоская электромагнитная волна. Взаимодействие с веществом также происходит по-разному.

Процессы поглощения и излучения потоков, как правило, можно описывать при помощи классических электродинамических соотношений. Для волн оптической области и для жестких лучей тем более следует принимать во внимание их квантовую природу.

Источники потоков

Несмотря на физическую разницу, везде - в радиоактивном веществе, телевизионном передатчике, лампе накаливания - электромагнитные волны возбуждаются электрическими зарядами, которые движутся с ускорением. Существует два основных типа источников: микроскопические и макроскопические. В первых происходит скачкообразный переход заряженных частиц с одного на другой уровень внутри молекул либо атомов.

Микроскопические источники испускают рентгеновское, гамма, ультрафиолетовое, инфракрасное, видимое, а в ряде случаев и длинноволновое излучение. В качестве примера последнего можно привести линию спектра водорода, которая соответствует волне в 21 см. Это явление имеет особое значение в радиоастрономии.

Источники макроскопического типа представляют собой излучатели, в которых свободными электронами проводников совершаются периодические синхронные колебания. В системах данной категории происходит генерация потоков от миллиметровых до самых длинных (в линиях электропередач).

Структура и сила потоков

С ускорением и изменяющиеся периодически токи оказывают воздействие друг на друга с определенными силами. Направление и их величина находятся в зависимости от таких факторов, как размеры и конфигурация области, в которой содержатся токи и заряды, их относительное направление и величина. Существенное влияние оказывают и электрические характеристики конкретной среды, а также изменения концентрации зарядов и распределения токов источника.

В связи с общей сложностью постановки задачи представить закон сил в виде единой формулы нельзя. Структура, называемая электромагнитным полем и рассматриваемая при необходимости в качестве математического объекта, определяется распределением зарядов и токов. Оно, в свою очередь, создается заданным источником при учете граничных условий. Условия определяются формой зоны взаимодействия и характеристиками материала. Если речь ведется о неограниченном пространстве, указанные обстоятельства дополняются. В качестве особого дополнительного условия в таких случаях выступает условие излучения. За счет него гарантируется "правильность" поведения поля на бесконечности.

Хронология изучения

Ломоносова в некоторых своих положениях предвосхищает отдельные постулаты теории электромагнитного поля: "коловратное" (вращательное) движение частиц, "зыблющаяся" (волновая) теория света, ее общность с природой электричества и т. д. Инфракрасные потоки были обнаружены в 1800 году Гершелем (английским ученым), а в следующем, 1801-м, Риттером был описан ультрафиолет. Излучение более короткого, нежели ультрафиолетовое, диапазона было открыто Рентгеном в 1895-м году, 8 ноября. Впоследствии оно получило название рентгеновского.

Влияние электромагнитных волн изучалось многими учеными. Однако первым, кто исследовал возможности потоков, сферу их применения, стал Наркевич-Иодко (белорусский научный деятель). Он изучил свойства потоков применительно к практической медицине. Гамма-излучение было открыто Полем Виллардом в 1900-м году. В этот же период Планк проводил теоретические исследования свойств черного тела. В процессе изучения им была открыта квантовость процесса. Его труд стал началом развития Впоследствии было опубликовано несколько работ Планка и Эйнштейна. Их исследования привели к формированию такого понятия, как фотон. Это, в свою очередь, положило начало созданию квантовой теории электромагнитных потоков. Ее развитие продолжилось в трудах ведущих научных деятелей ХХ столетия.

Дальнейшие исследования и работы по квантовой теории электромагнитного излучения и взаимодействия его с веществом привели в итоге к образованию квантовой электродинамики в том виде, в котором она существует и сегодня. Среди выдающихся ученых, занимавшихся изучением данного вопроса, следует назвать, кроме Эйнштейна и Планка, Бора, Бозе, Дирака, де Бройля, Гейзенберга, Томонагу, Швингера, Фейнмана.

Заключение

Значение физики в современном мире достаточно велико. Практически все, что применяется сегодня в жизни человека, появилось благодаря практическому использованию исследований великих ученых. Открытие электромагнитных волн и их изучение, в частности, привели к созданию обычных, а впоследствии и мобильных телефонов, радиопередатчиков. Особое значение практическое применение таких теоретических знаний имеет в области медицины, промышленности, техники.

Такое широкое использование объясняется количественным характером науки. Все физические эксперименты опираются на измерения, сравнение свойств изучаемых явлений с имеющимися эталонами. Именно для этой цели в рамках дисциплины развит комплекс измерительных приборов и единиц. Ряд закономерностей является общим для всех существующих материальных систем. Так, например, законы сохранения энергии считаются общими физическими законами.

Науку в целом называют во многих случаях фундаментальной. Это связано, прежде всего, с тем, что прочие дисциплины дают описания, которые, в свою очередь, подчиняются законам физики. Так, в химии изучаются атомы, вещества, образованные из них, и превращения. Но химические свойства тел определяются физическими характеристиками молекул и атомов. Эти свойства описывают такие разделы физики, как электромагнетизм, термодинамика и прочие.

Каждый раз, когда электрический ток изменяет свою частоту или направление, он генерирует электромагнитные волны - колебания электрического и магнитного силовых полей в пространстве. Один из примеров - изменяющийся ток в антенне радиопередатчика, который создает кольца распространяющихся в пространстве радиоволн.

Энергия электромагнитной волны зависит от ее длины - расстояния между двумя соседними «пиками». Чем меньше длина волны, тем выше ее энергия. В порядке убывания своей длины электромагнитные волны подразделяются на радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и гамма-излучение. Длина волны гамма-излучения не достигает и одной стомиллиардной метра, в то время как радиоволны могут иметь длину, исчисляющуюся в километрах.

Электромагнитные волны распространяются в пространстве со скоростью света, а силовые линии их электрического и магнитного полей располагаются под прямым углом друг к другу и к направлению движения волны.

Электромагнитные волны расходятся постепенно расширяющимися кругами от передающей антенны двусторонней радиостанции аналогично тому, как это делают волны, вызванные падением камешка в пруд. Переменный электрический ток в антенне создает волны, состоящие из электрического и магнитного полей.

Схема электромагнитной волны

Электромагнитная волна распространяется прямолинейно, а ее электрическое и магнитное поле перпендикулярны потоку энергии.

Преломление электромагнитных волн

Так же как и свет, все электромагнитные волны преломляются, когда входят в вещество под любым углом, кроме прямого.

Отражение электромагнитных волн

Если электромагнитные волны падают на металлическую параболическую поверхность, они фокусируются в точке.

Рост электромагнитных волн

ложный узор электромагнитных волн, исходящих из передающей антенны, возникает из одиночного колебания электрического тока. Когда ток течет вверх по антенне, электрическое поле (красные линии) направлено сверху вниз, а магнитное поле (зеленые линии) - против часовой стрелки. Если ток изменяет свое направление, то же самое происходит с электрическим и магнитным полями.

Общие понятия об электромагнитных волнах

На сегодняшнем уроке мы с вами будем рассматривать такую необходимую тему, как электромагнитные волны. А важной эта тема является хотя бы по тому, что вся наша современная жизнь связана с телевиденьем, радиовещанием и мобильной связью. Поэтому стоить подчеркнуть, что все это осуществляется за счет электромагнитных волн.

Теперь перейдем к более подробному рассмотрению вопроса, связанного с электромагнитными волнами и в первую очередь озвучим определение таких волн.

Как вам уже известно, волной называют распространяющееся в пространстве возмущение, то есть, если где-то какое-то возмущение произошло, и оно распространяется во все стороны, то мы можем говорить, что распространение этого возмущения это и есть не что иное, как волновое явление.

Электромагнитные волны - это такие электромагнитные колебания, которые распространяются в пространстве с конечной скоростью, которая зависит от свойства среды. Иными словами можно сказать, что электромагнитной волной называют распространяющееся в пространстве электромагнитное поле или электромагнитное возмущение.

Давайте свое обсуждение начнем с того, что теорию электромагнитных волн электромагнитного поля впервые создал английский ученый Джеймс Максвелл. Самое интересное и любопытное в этой работе заключается в том, что оказывается электрические и магнитные поля, как вы знаете, и так как было доказано, что они существуют вместе. Но оказывается, они могут существовать и совершенно в отсутствии какого-либо вещества. Вот это очень важное заключение и было сделано в работах Джеймса Клерка Максвелла.

Оказывается, электромагнитное поле может существовать даже там, где отсутствует какое-либо вещество. Вот мы с вами говорили, что звуковые волны присутствуют лишь только там, где есть среда. То есть, колебания, происходящие с частицами, имеют способность передаваться лишь там, где находятся частицы, которые обладают способностью передавать это возмущение.

А вот, что касается электромагнитного поля, то оно может существовать там, где нет вещества, и отсутствуют какие-либо частицы. И так, электромагнитное поле существует в вакууме, значит, из этого следует, что если мы создадим определенные условия и сможем, как бы создать общее электромагнитное возмущение в пространстве, то соответственно это возмущение имеет способность распространяться по всем направлениям. И именно это будет у нас электромагнитная волна.

Первый человек, который смог произвести излучение электромагнитной волны, и прием электромагнитной волны - это был немецкий ученый Генрих Герц. Ему первому удалось создать такую установку по излучению и по приему электромагнитной волны.

Первое, что мы должны здесь сказать, что для излучения электромагнитной волны нам требуется, конечно же, достаточно быстро движущийся электрический заряд. Мы должны создать такое устройство, где будет очень бистро движущийся или ускоренно движущийся электрический заряд.

Генрих Герц, с помощью своих опытов доказал, что для получения мощной и достаточно ощутимой электромагнитной волны, движущийся электрический заряд должен свое колебание осуществлять с очень высокой частотой, то есть порядка нескольких десятков тысяч герц. Также следует подчеркнуть, что если такое колебание происходит у заряда, то вокруг него будет генерироваться переменное электромагнитное поле и распространяться во все стороны. То есть, это и будет электромагнитная волна.

Свойства электромагнитных волн

Еще необходимо отметить тот факт, что электромагнитная волна, конечно же, обладает определенными свойствами и вот об этих свойствах как раз, и было совершенно точно указано в работах Максвелла.

Следует также отметить, что свойства электромагнитных волн имеют определенные различия, а также очень сильно зависят от ее длины. В зависимости от свойств и длинны волн электромагнитные волны делятся на диапазоны. Они имеют довольно таки условную шкалу, так как соседние диапазоны имеют свойства накладываться друг на друга.



Не лишним будет знать и то, что некоторые области обладают общими свойствами. К таким свойствам относятся:

Способность проникновения;
высокая скорость распространения в веществе;
влияние на человеческий организм, как положительное, так и отрицательное и т.д.

К разновидностям электромагнитных волн можно отнести, как радиоволны, ультрафиолетовый и инфракрасный диапазоны, видимый свет, а также рентгеновское, гамма-излучение и другие.

А теперь давайте внимательно рассмотрит приведенную внизу таблицу, и подробнее изучим, как можно классифицировать электромагнитные волны, какие бывают виды излучений, источники излучения, а также их частоту:



Интересные факты о электромагнитных волнах

Наверное, ни для кого не будет секретом тот факт, что пространство, которое нас окружает, пронизано электромагнитным излучением. Такое излучение связано не только с телефонными и радиоантеннами, но и окружающими нас телами, Землей, Солнцем и звездами. В зависимости от частоты колебаний электромагнитные волны могут иметь различные названия, но суть их сходна. К таким электромагнитным волнам можно отнести, как радиоволны, так и инфракрасное излучение, и видимый свет, и рентгеновские лучи, а так же лучи биополя.

Такой безграничный источник энергии, как электромагнитное поле является причиной появления колебания электрических зарядов атомов и молекул. Из этого следует, что колеблясь, заряд движется с ускорением и при этом излучает электромагнитные волны.

Воздействие электромагнитных волн на здоровье человека

Уже много лет ученные обеспокоены проблемой влияния электромагнитных полей на здоровье человека, животных и растений и поэтому много времени посвящают исследованиям и изучению этой проблемы.

Наверное, каждый из вас бывал на дискотеках и обращал внимание на то, что под действием ультрафиолетовых ламп светлая одежда начинала светиться. Такой вид излучения не представляет опасности для живых организмов.

А вот посещая солярий или используя в медицинских целях ультрафиолетовые лампы необходимо использовать защиту для глаз, так как такое воздействие может вызывать кратковременную потерю зрения.

Так же при использовании ультрафиолетовых бактерицидных ламп, которые применяют для обеззараживания помещений, необходимо быть крайне осторожными и при их применении необходимо покинуть помещение, так как они отрицательно влияют на кожу человека, а также на растения, вызывая, ожег листьев.

Но кроме окружающих нас источников излучения и различных приборов, организм человека также имеет свои электрические и магнитные поля. Но также следует знать, что в человеческом организме на протяжении его жизни электромагнитные поля имеют свойство постоянно меняться.

Чтобы определить электромагнитное поле человека используют такой точный прибор, как энцефалограф. С помощью этого прибора можно с высокой точностью измерить электромагнитное поле человека и определить его активность в коре головного мозга. Благодаря появлению такого прибора, как энцефалограф, появилась возможность для диагностики различные заболевания даже на ранней стадии.

Загрузка...