bookingsky.ru

Самодельный кардиограф из компьютера. Электрокардиограф "сделай сам". Нюансы расположения электродов на грудной клетке

Бродя по интернету, часто натыкаешься на изобретения "домашних мастеров" - то прибор для ионизации воды, то лампу кварцевую "своими руками". Но чтоб карманный электрокардиограф, да еще- собственными руками...

Рассматривается простой кардиограф, умещающийся в кармане и обеспечивающий регистрацию электрокардиограммы (частоты пульса), температуры и положения тела человека. Эти параметры запоминаются на карте памяти micro SD, откуда в последствии могут быть переписаны на персональный компьютер (ПК) и при помощи специальной программы отображены в виде графиков (привязанных к времени и дате съемки) для детального изучения.

Устройство разрабатывалось для изучения поведения человека во сне, но может быть также полезно спортсменам и медикам. Начинающих радиолюбителей заинтересует схема регистрации биотоков (когда источником сигнала становится человеческое тело) и пример применения широко распространенных карт памяти SD для сохранения разнородной информации.

Принципиальная схема кардиографа приведена на рис. 1.


Рис 1 - Принципиальная схема простого кардиографа

На элементах DA1, DA2, DA3 собран усилитель кардиосигнала. Это обычный УНЧ с дифференциальным входом и высоким входным сопротивлением . К входам усилителя E+ и E- подключается пара электродов, закрепленных на теле в области сердца для съема исходного кардиосигнала. Элементы DA1.1 и DA1.2 работают как повторители, обеспечивающие высокое входное сопротивление. Инструментальный усилитель DA3 усиливает сигнал примерно в 6 раз (коэффициент задается резистором R4) перед подачей на АЦП микроконтроллера DD1.

Помимо полезного сигнала биологического происхождения на электродах E+ и E- присутствуют синфазные помехи (прежде всего 50 Гц от осветительной сети), амплитуда которых в тысячи раз превышает полезный сигнал. Для их подавления используется «активная земля» : на теле закрепляется третий электрод E0, на который с выхода DA2.1 в противофазе подаётся синфазная составляющая входного сигнала. Её выделение выполняет сумматор на R1 и R2, а DA2.1 - усиление и инверсию. Благодаря такой своеобразной отрицательной обратной связи величина синфазных помех резко снижается, и далее они эффективно подавляются DA3. Для формирования опорного напряжения (средней точки) для ОУ DA2.1 и DA3 используются элементы R6, R7, С1, С2, DA2.2.

Для измерения температуры и положения тела к микроконтроллеру DD1 по двухпроводному интерфейсу I 2 C подключены интегральные датчики температуры ВК1 и ускорения ВК2. Спецификация шины I 2 C реализуется программно. Резисторы R8 и R10 служат нагрузками линий интерфейса. Резисторы R9, R11, также как R5, R12, R14, R15 защищают выводы микроконтроллера и периферии от перегрузок при сбоях МК (в отлаженное устройство их можно не устанавливать).

Питание акселерометра BK2 осуществляется через диод VD1, который снижает напряжение питания BK2 на 0.7 в, чтобы напряжение "свежезаряженного" Ni-MH аккумулятора GB1 (4.2 в) не превышало паспортного значения для BK2 MMA7455LT (3.6 в). Положение тела определяется по проекции силы тяжести на оси чувствительности BK2, что например позволяет четко различить следующие положения тела: стоя, лежа на спине, на животе, на левом или на правом боку. По изменению ускорения фиксируется двигательная активность.

Функционирование устройства как единого целого осуществляется под управлением микроконтроллера DD1. Сразу после подачи питания устройство работает в режиме записи: DD1 выполняет периодический опрос датчиков BK1 и BK2, измерение частоты на входе CCP1 и оцифровку кардиосигнала. Объединенный информационный поток записывается в файл на карту памяти micro SD (разъем X1), а также выдаётся в ПК по интерфейсу RS-232 (разъем X2) для контроля и визуализации. Командой с компьютера можно остановить запись и перевести устройство в режим скачивания сохраненных файлов.

Сохранение информации осуществляется на карте памяти micro SD , которая подключается через разъем X1. В процессе работы карта может потреблять до 100 мА (в импульсе), создавая мощные помехи по питанию, поэтому она запитана от источника GB1 напрямую, а остальная схема через RC - фильтр R16 C5.

От использования стандартной файловой системы FAT на карте SD пришлось отказаться: она не устойчива к внезапному исчезновению питания, а памяти МК не достаточно для буферизации поступающих в реальном времени данных. Разработан альтернативный формат хранения информации. Запись на карту осуществляется последовательно, сектор за сектором. Четырехбайтный номер первого свободного сектора EmptyPos, в который должна осуществляться запись новых данных, хранится в EEPROM микроконтроллера. После записи очередного сектора номер EmptyPos инкрементируется.

В каждом секторе SD-карты (размером 512 байт) наряду с полезными данными сохраняется сигнатура и 4-байтный номер первого сектора файла. Таким образом, хотя данные на карту пишутся строго последовательно, они структурированы в виде файлов, рис. 2. Логика получения списка всех файлов реализуется программой на персональном компьютере; при этом предпринимаются дополнительные меры по контролю и коррекции ошибок.


Рис 2 - Механизм последовательной записи файлов на SD-карту

Вместо привычных операций форматирования (при установке новой SD-карты) и удаления файлов (при исчерпании объема карты) пользователем выполняется операция установки EmptyPos на начальный сектор с номером 65536. Первые 65536 секторов карты не используются ради сохранения существующей на карте «настоящей» файловой системы.

Устройство соединяется с компьютером по интерфейсу RS-232 через разъем X2. Резистор R13 ограничивает ток через вывод RX МК в условиях, когда напряжение входного сигнала выше напряжения питания МК. Сигналы на разъёме X2 имеют уровни TTL, поэтому непосредственно подключать компьютер к разъему X2 нельзя! Следует использовать готовый переходник USB-COM от сотового телефона (обычно такие переходники имеют уровни TTL) или изготовить такой переходник самостоятельно на базе микросхемы FT232R по типовой схеме . В крайнем случаем можно собрать преобразователь уровней в TTL на микросхеме MAX232 или по схеме на рис. 3. Через разъем X2 (контакты 5 и 8) может также осуществляться зарядка аккумулятора GB1.

Скорость обмена устройства с компьютером фиксированная: 57600 бод. Только для ускорения переписывания файлов с SD - карты в ПК скорость может быть повышена до 460800, 806400 или 921600 бод (если компьютер их поддерживает). Выдача данных при этом осуществляется МК программно на вывод RC0 (а выход TX отключается).


Рис. 3 - Простой преобразователь ТТЛ - RS-232

Для работы с устройством разработана специальная программа для ПК (файл программы EKG_SD_2010.exe прилагается), которая позволяет визуализировать кардиограмму и показания датчиков во время записи, считывать с SD-карты список файлов и копировать нужные на компьютер, сохранять кардиосигнал в стандартном формате WAVE PCM, обрабатывать записи с целью выделения R-зубцов и расчета частоты пульса, визуализировать и сохранять в унифицированном формате полученные временные зависимости. Более подробно работа с программой описана в прилагаемом «руководстве оператора» EKG_SD_2010.doc.

МК DD1 измеряется частоту сигнала на выводе 13, что можно использовать для подключения к устройству дополнительных датчиков. Частота сигнала не должна превышать 8 КГц (относительная погрешность измерения не хуже 10 -6 , период измерения ~ 0.25 сек).

Детали и конструкция. В качестве DA1 и DA2 можно применять любые ОУ широкого применения, работоспособные в диапазоне питающих напряжений от 2.7 до 4.2 в. Инструментальный усилитель DA3 заменим обычным ОУ, включенным по схеме на рис. 4. Однако при этом желательно подобрать близкими сопротивления резисторов R18 и R19, R20 и R21 (а также R1 и R2).

Для микроконтроллера DD1 должна быть предусмотрена панелька. В него следует занести программу из прилагаемого файла EKG_SD_Pic.hex ("фьюзы" хранятся внутри прошивки).


Рис. 4 - Функциональная замена DA3 AD623

Устройство может работать без SD - карты или датчиков BK1 и BK2 с соответствующим снижением функциональности. Это позволяет начинающим радиолюбителям упрощать устройство по своему усмотрению без необходимости изменения прошивки DD1 или программ для компьютера. Например, если надо только наблюдать биотоки в реальном времени, а запись на SD-карту не требуется, то карту (как и дополнительные датчики) можно не устанавливать.

В качестве разъема X1 для подключения micro SD-карты используется переходник micro SD ® SD (они продаются вместе с micro SD картами). Контакты переходника аккуратно лудят, после чего подсоединяют к схеме короткими проводками МГТФ-0.05. На рис. 5 показана нумерация и обозначения контрактов для макро SD - карты (т.е. переходника). Желательно применять карты SD class 4 и выше (из-за малого объема памяти МК максимальная задержка записи одного сектора должна быть меньше 40 мс). Поддерживаются карты HC (ёмкостью ³ 4 Гб).


Рис. 5 - Нумерация контактов обычной SD-карты (переходника)

Разъем X2 - типа DB9F или более миниатюрный (подходящий к применяемому переходнику COM-USB).

Датчик температуры BK1 фиксируется на теле пластырем, а к основной схеме подключается 4-мя свитыми в жгут проводами МГТФ-0.05 длиной до 50 см.

Монтаж акселерометра BK2 MMA7455LT (размерами 3´5´1 мм) требует определенной ловкости. Проше всего приклеить датчик к плате контактами вверх и подпаять к схеме проволочками 0.1 мм. Конденсаторы С3, С4 должны стоять в непосредственной близости от ВК2. По задумке датчик должен сохранять достаточно постоянное положение относительно торса (или другой выбранной части тела). Чтобы достичь этого, BK2 можно расположить либо в корпусе кардиографа, либо сделать выносным, подключив к основной схеме проводами также как BK1.

Электроды E+, E-, E0 - металлические кружки Æ 10 мм из титана, которые закрепляются в области сердца пластырем. Для экспериментов можно использовать мелкие монеты - но от длительного контакта с телом они начинают ржаветь! Подключаются электроды неэкранированными проводами МГТФ-0.05 (по возможности провода к E+ и E- следует скрутить, а вокруг обвить провод к E0).

Электрод E0 крепится в любом месте (например, приблизительно между E+ и E-). В медицине используют специальные схемы расположения электродов на теле и соответствующие методики анализа кардиограмм . Однако для определения частоты пульса электроды E+ и E- можно располагать в области сердца достаточно произвольно, лишь бы наблюдались достаточно четкие импульсы положительной полярности (как на рис. 6). Кардиосигнал также можно снимать с рук, но импульсы при этом слабее (и их автоматическое выделение затруднительно).


Рис. 6 - Пример исходного кардиосигнала

Питается устройство от аккумулятора на 3.6 в. Потребляемый ток зависит от SD-карты и в среднем составляет 20-30 мА. Емкость GB1 более 400 мА/час выбирается исходя из требуемого времени записи (8 - 12 часов). Следует отметить, что напряжение свежего аккумулятора доходит до 4.2 в, превышая установленный предел для SD-карты (3.6 в). Однако практика показала, что они повышенное напряжение выдерживают.

Налаживание . Цифровая часть схемы в налаживании не нуждается. После инициализации SD-карты через 1-2 сек от включения SA1 на выходе TX DD1 должен появиться сигнал передачи потока данных в ПК. Если теперь соединить ПК к устройством и выбрать в программе EKG_SD_2010.exe правильный COM-порт, на экране должны отображаться состояние записи, номер сектора EmptyPos, показания датчиков BK1, BK2 и график оцифрованного кардиосигнала. Далее следует нажать кнопку «СТОП» и выполнить «форматирование». Успех выполнения этих операции свидетельствует о корректной связи устройства с ПК. Нажатием кнопки «Инициализация» проверяется, правильно ли устройство опознаёт SD-карту.

Пока электроды E+, E-, E0 никуда не подключены, исправный усилитель кардиосигнала должен «ловить» (а компьютер отображать) сигнал помехи 50 Гц от сети. При замыкании между собой E+, E-, E0, амплитуда помехи должна резко уменьшаться, причем на выводе 6 DA3 должна быть примерно половина питающего напряжения.

Далее электроды E+, E-, E0 крепят к телу и пытаются засечь импульсы, коррелированные с ударами сердца. При проблемах следует обеспечить увлажнение кожи в месте контакта с электродом и варьировать их положение в поисках лучшего сигнала. Можно также увеличить усиление DA3, уменьшив сопротивление R4.

— ЭКГ-отведения
— Электрокардиографическая топография (ЭКГ топография).
— Расположение электродов. Точки наложения электродов для снятия ЭКГ.

Компоненты электрокардиограммы и их нормальные величины .

ЭКГ – отведения.
Электрокардиографически регистрируются:
3 стандартных отведения:
I – левая рука (+) и правая рука (-),
II – левая нога (+) и правая рука (-),
III – левая нога (+) и левая рука (-);

3 усиленных однополюсных отведения от конечностей:
aVR – усиленное отведение от правой руки,
aVL – усиленное отведение от левой руки,
aVF – усиленное отведение от левой ноги;

6 грудных отведений:
V1, V2, V3, V4, V5, V6;

Также возможно снятие дополнительных отведений:
3 дополнительных грудных отведения (прицельная диагностика очаговых изменений миокарда в заднебазальных отделах ЛЖ):
V7, V8, V9;


3 двухполюсных отведения по Небу (дополнительная диагностика очаговых изменений миокарда задней, переднебоковой и верхних отделов передней стенки ЛЖ):
D – Dorsalis, I – Inferior, A – Anterior.

Встречаются также и крайне редкие варианты отведений:
Отведение S5 — применяется при плохо выраженном предсердном комплексе ЭКГ, помогает в дифференциальной диагностике желудочковых и наджелудочковых нарушений сердечного ритма.

Ортогональные отведения по Франку — в качестве ортогональных снимают ЭКГ в трех грудных отведениях. Наиболее простыми являются отведения X, Y, Z. Оси этих отведений расположены перпендикулярно друг другу и перпендикулярно горизонтальной, вертикальной и сагиттальной плоскости человека.

Пищеводные отведения — используются для выявления предсердного комплекса ЭКГ. Для их записи в пищевод с помощью зонда вводится электрод, связанный с кардиографом. В пищеводных отведениях хорошо выражен зубец, обусловленный возбуждением предсердий, что помогает в диагностике различных аритмий.

Внутрисердечные отведения — используются для регистрации ЭДС сердца в полости предсердия или желудочка. Для этого специальный зонд-электрод вводится в полость сердца во время зондирования.

Отведения по Арриги. Оси отведений по Арриги расположены в сагиттальной плоскости и образуют треугольник, в центре которого расположено сердце.


и любом варианте расположения сердца в грудной клетке (астеническом, гиперстеническом) одна из осей остается параллельной задней стенке левого желудочка и улавливает признаки инфаркта миокарда несколько лучше, чем стандартное III и отведение aVF.
Снимают ЭКГ в отведениях по Арриги в таких положениях переключателя: в первом положении регистрируют отведение А1, во втором - отведение А2, в третьем- А3.
Вверх

Обозначения:
— RCA-Right Coronary Artery (правая коронарная артерия);
— SVC-Superior Vena Cava (верхняя полая вена);
— IVC-Inferior Vena Cava (нижняя полая вена);
— RA-Right Atrium (правое предсердие);
— RV-Right Ventricle (правый желудочек);
— LAD-Left Anterior Descending artery (передняя нисходящая артерия);
— LV-Left Ventricle (левый желудочек);
— LCX-Left CircumfleX artery (огибающая артерия).

Если вспомнить скелетотопию сердца у здорового человека, то на переднюю поверхность грудной клетки проецируется 2/3 правых отделов сердца (правое предсердие и правый желудочек) и 1/3 левого желудочка. Т.к левый желудочек «электрически» более активный и сильнее,то ЭКГ топография воспринимается несколько иначе: 2/3 передней стенки занимает левый желудочек,а 1/3 правой границы — правый желудочек.
Соответственно, нижняя и левая боковая стенка представлена левым желудочком.


ЛОВНО!
Условно, принято, что первых два грудных электрода (V1,V2) стоят на границе правого и левого желудочков, то есть на перегородке. Поэтому, именно они демонстрируют, как электрофизиологические характеристики левого желудочка (перегородочный и задний-высокий инфаркты), так и деятельность правого (гипертрофия и блокада правой ножки пучка Гиса).

Отведения от конечностей, «смотрят» сердце в вертикальной плоскости, соответственно показывают, лишь, нижнюю и боковую стенки. Глядя на картинку,да и визуально, если, представить, то боковую стенку «показывают»:
l и aVL отведения.
Нижнюю стенку:lll, aVF и ll.

Грудные отведения «показывают» сердце в горизонтальной плоскости, своеобразным полукругом. Первые четыре отведения демонстрируют переднюю стенку, а последние два-боковую.
-V1-V2-перегородка;
-V3-V4-собственно,передняя стенка;
-V4-принято называть верхушкой.
-V5-V6-боковая стенка.

Дополнительные грудные отведения: V7-V9 показывают заднюю стенку, а дополнительные ПРАВЫЕ грудные отведения: V3R и V4R — показывают правый желудочек.
Вверх

Расположение электродов. Точки наложения электродов для снятия ЭКГ.
В стандартных отведения и 3 усиленных отведениях от конечностей электроды располагаются:
Красный – правая рука,
Желтый – левая рука,
Зеленый – левая нога,
Черный – правая нога.




В грудных отведениях электроды располагаются:
V1 (красный) – в четвертом межреберье по правому краю грудины,
V2 (желтый) – в четвертом межреберье по левому краю грудины,
V3 (зеленый) – примерно на уровне пятого ребра по левой окологрудинной линии, между четвертым и вторым электродами,
V4 (коричневый) – в пятом межреберье по левой средне-ключичной линии,
V5 (черный) – на горизонтальной линии V4 по левой передней подмышечной линии,
V6 (синий) – на горизонтальной линии V4- V5 по левой средней подмышечной линии.

В дополнительных грудных отведениях электроды располагаются:
V7 – на уровне V4- V6 по левой заднеподмышечной линии,
V8 – на уровне V4- V6 по левой лопаточной линии,
V9 – на уровне V4- V6 по левой околопозвоночной линии.

В отведениях по Небу электроды располагаются:
Красный стандартный – во втором межреберье по правому краю грудины,
Зеленый стандартный – в пятом межреберье по левой средне-ключичной линии,
Желтый стандартный – на горизонтальной линии с зеленым электродом по задней подмышечной линии.



В отведении S5 электроды располагаются:
Красный электрод устанавливается на рукоятку грудины,
Желтый — в пятое межреберье слева непосредственно рядом с грудиной.

В ортогональных отведениях по Франку электроды располагаются:
Грудные электроды располагают на уровне пятого межреберья при положении пациента сидя и на уровне четвертого - в положении лежа. Места наложения электродов следующие: точка Е расположена по средне- грудинной линии; точка М - на позвоночнике, симметрично точке Е; точка А - цо левой средней подмышечной линии; точка С - между электродами Е и А; точка I - по правой средней подмышечной линии; точка Н - на задней поверхности шеи или на голове и точка F - на левой ноге. Полярность, предложенная Франком, следующая: отведение X (горизонтальная пространственная компонента) получается в результате коммутации электродов Е, С и А (положительный полюс) и I (отрицательный полюс); отведение Z (сагиттальная пространственная компонента) - электроды А и М (положительный полюс) и 1, Е, С (отрицательный) и отведение V (вертикальная пространственная компонента) - электроды F и М (положительный полюс), а электрод Н - (отрицательный).



В отведениях по Арриги электроды располагаются:
Желтый (активный, положительный) с помощью плоской пластины укрепляют под углом левой лопатки,
Красный (отрицательный) электрод на груше-присоске - над серединой левой ключицы,
Зеленый - на левой голени.
Вверх

Вверх

Электрокардиография — один из базовых, не теряющих своей актуальности, метод исследования, позволяющий врачу любой специальности определиться с функциональным состоянием сердца и наличием возможной патологии, регистрируемой на электрокардиограмме (ЭКГ). Методика ЭКГ довольно проста, однако существует большое количество специфических отведений и применяемых для этого электродов. В данно категории Вы можете найти основные и редко используемые отведения ЭКГ, правила наложения электродов для снятия электрокардиограммы при регистрации различных ЭКГ-отведений.

kingmed.info

Общие правила наложения электродов

При записи электрокардиограммы совершается установка электродов на несколько участков тела. Таким образом обеспечивается проведение электрических импульсов через сердце, а результаты получаются более точными. Правильность расположения клемм является залогом достоверной записи работы сердца.



Общие правила установки электродов:

  • Кожа в месте наложения электрода обезжиривается с помощью спирта;
  • Выраженный волосяной покров при использовании многоразовых электродов обрабатывается мыльным раствором (в противном случае волосы сбриваются);
  • Электроды покрываются специальным гелем, который улучшает электропроводимость (его можно заменить изотоническим раствором, однако делать это не рекомендуется, так как контакт ухудшится);
  • Использование марлевых прокладок вместо специального геля также не является альтернативой гелю, так как они быстро высыхают (абсолютно запрещены такие прокладки для длительных исследований, например, холтеровского мониторирования);
  • Важно соблюдение правил техники безопасности при работе с электроприборами, в частности заземление (не требуется при записи ЭКГ с помощью портативных электрокардиографов, работающих на батарейках).

Все электроды подразделяются на многоразовые и одноразовые. Преимущества и недостатки есть у каждого вида и, как правило, вариант для записи подбирает медицинский персонал.



Особенности одноразовых электродов

Приобрести одноразовые электроды можно в интернет-магазине Авицена-мед, где продаются только качественные элементы итальянского производства. Они подойдут для суточных мониторингов или стрессовых тестов, где подразумевается физическая активность пациента.

Достоинства одноразовых электродов:

  • Отсутствие риска передачи инфекционных заболеваний;
  • Простота в установке (медики считают их более практичными);
  • Высокая степень приклеивания (не спадают при длительном использовании);
  • Хорошая проводимость и качественный контакт;
  • Подходят для пациентов с усиленным потоотделением.

В отличие от одноразовых электродов, многоразовые конструкции часто используются в государственных учреждениях, так как более экономичные и крепкие.

Куда и как накладывать электроды?

В электрокардиограмме существует 12 отведений: 3 основных, 3 усиливающих и 6 грудных. Для снятия данных устанавливается 10 электродов: на все конечности и грудную клетку. Для удобства использования они часто отличаются по внешнему виду и цветовой гамме.

Особенности установки электродов на конечностях

Накладывание электродов на конечности подразумевает всем известный цветовой порядок светофора. Установка клемм выглядит следующим образом:

  • На правую руку накладывается красный электрод;
  • К левой руке крепится желтый электрод;
  • На левую ногу устанавливается зеленый электрод;
  • Правая нога подразумевает заземление и на нее крепится черный электрод.

Электроды устанавливаются на проксимальные отделы конечностей: запястья и лодыжки, которые предварительно обрабатывают и наносят гель. Если у человека отсутствует та или иная конечность, то клемму располагают на культе. Иногда электроды дополнительно закрепляют резиновыми лентами.

Нюансы расположения электродов на грудной клетке

Грудные электроды могут выглядеть по-разному. Чаще всего они представляют собой резиновые присоски. Иногда электроды похожи на обычные прямоугольные пластины, тогда их дополнительно закрепляют резинкой.

Всего имеется 6 грудных отведений. В зависимости от оснащенности ЭКГ-кабинета, все электроды накладываются сразу или у медсестры имеется лишь одна ветвь, которую она устанавливает поочередно и записывает каждое отведение отдельно.

Порядок установки грудных электродов:

  • Первый – четвертое межреберье справа от грудины;
  • Второй – четвертое межреберье слева от грудины;
  • Третий – пятое ребро по левой парастернальной линии;
  • Четвертый – пятое межреберье по левой среднеключичной линии (либо точно в месте, где проецируется верхушечный толчок, то есть на 1,5 сантиметра внутрь от среднеключичной линии в норме);
  • Пятый – пятое межреберье по передней подмышечной линии;
  • Шестой – пятое межреберье по средней подмышечной линии.

Каждое грудное отведение отвечает за определенный отдел сердца, поэтому их правильное наложение имеет огромное значение.

avicenna-med.org

Немного истории о появлении ЭКГ

Ещё в середине 19-го века лекари начали задумываться о том, как же отследить работу, вовремя выявить отклонения и предупредить страшные последствия функционирования больного сердца. Уже в то время врачи выявили, что в сокращающейся сердечной мышце происходят электрические явления, и стали проводить первые наблюдения и исследования на животных. Учёные из Европы начали работать над созданием специального аппарата или уникальной методики для наблюдения за работой сердца, и наконец-то был создан первый в мире электрокардиограф. Все это время наука не стояла на месте, таким образом, и в современном мире используют этот уникальный и уже усовершенствованный аппарат, на котором производят так называемую электрокардиографию, ее ещё называют сокращённо ЭКГ. Об этой методике регистрации биотоков сердца и пойдёт речь в статье.

Процедура ЭКГ

На сегодняшний день это абсолютно безболезненная и доступная каждому процедура. ЭКГ можно сделать практически в любом медицинском учреждении. Проконсультируйтесь с вашим семейным врачом, и он вам подробно расскажет, для чего необходима данная процедура, как снимать ЭКГ и где её можно пройти в вашем городе.

Краткое описание

Рассмотрим этапы того, как снимать ЭКГ. Алгоритм действий такой:

  1. Подготовка пациента к будущей манипуляции. Укладывая его на кушетку, медработник просит расслабиться и не напрягаться. Убирают все лишние предметы, если такие имеются и могут помешать записи кардиографа. Освобождают от одежды необходимые участки кожи.
  2. Приступают к наложению электродов строго в определённой последовательности и очерёдности наложения электродов.
  3. Подключают аппарат к работе при соблюдении всех правил.
  4. После того как аппарат подключён и готов к работе, приступают к записи.
  5. Снимают бумагу с записанной электрокардиограммой сердца.
  6. Выдают результат ЭКГ пациенту или доктору на руки для последующей расшифровки.

Подготовка к снятию ЭКГ

До того как вы узнаете, как снимать ЭКГ, рассмотрим, какие действия нужно произвести, чтобы подготовить пациента.

Аппарат ЭКГ есть в каждом медицинском учреждении, он находится в отдельной комнате с кушеткой для удобства пациента и медперсонала. Помещение должно быть светлым и уютным, с температурой воздуха +22…+24 градуса по Цельсию. Так как правильно снять ЭКГ можно только при условии полного спокойствия пациента, такая обстановка очень важна для проведения данной манипуляции.

Укладывают обследуемого на медицинскую кушетку. В положении лёжа тело легко расслабляется, что важно для будущей записи кардиографа и для оценки работы самого сердца. Перед тем как накладывать электроды для ЭКГ, смоченным медицинским спиртом ватным тампоном необходимо обработать нужные области рук и ног пациента. Повторная обработка этих мест производится физиологическим раствором или специальным медицинским гелем, предназначенным для этих целей. Ппациенту необходимо сохранять спокойствие во время записи кардиографа, дышать ровно, умеренно, не волноваться.

Как правильно снять ЭКГ: наложение электродов

Необходимо знать, в какой последовательности нужно накладывать электроды. Для удобства персонала, проводящего данную манипуляцию, изобретатели аппарата ЭКГ определили 4 цвета для электродов: красный, жёлтый, зелёный и чёрный. Накладываются они именно в таком порядке и никак по-другому, иначе проведение ЭКГ не будет целесообразным. Перепутать их просто недопустимо. Поэтому медперсонал, который работает с аппаратом ЭКГ, проходит специальное обучение с последующей сдачей экзамена и получением допуска или сертификата, позволяющего ему работать именно с данным аппаратом. Медработник в кабинете ЭКГ, согласно своей рабочей инструкции, должен чётко знать места наложения электродов и правильно выполнять последовательность.

Итак, электроды для рук и ног имеют вид больших зажимов, но не стоит волноваться, зажим располагается на конечности абсолютно безболезненно, эти зажимы разных цветов и накладываются на определённые места тела следующим образом:

  • Красный — запястье правой руки.
  • Жёлтый — запястье левой руки.
  • Зелёный — левая нога.
  • Чёрный — правая нога.

Наложение грудных электродов

Грудные электроды в наше время бывают разных видов, всё зависит от фирмы производителя самого аппарата ЭКГ. Они бывают одноразовыми и многоразовыми. Одноразовые более удобны в использовании, не оставляют неприятных следов раздражения на коже после снятия. Но если нет одноразовых, тогда применяют многоразовые, они по своей форме похожи на полусферы и имеют свойство присасываться. Это свойство необходимо для чёткой постановки именно в нужное место с последующей фиксацией на нужное время.

Медицинский работник, уже знающий, как снять ЭКГ, справа от пациента располагается у кушетки, для того чтобы правильно наложить электроды. Необходимо, как уже сказано, предварительно обработать кожу груди пациента спиртом, затем физиологическим раствором или медицинским гелем. Каждый грудной электрод промаркирован. Чтобы было понятнее, как снять ЭКГ, схема наложения электродов представлена ниже.

Приступаем к наложению электродов на грудь:

  1. Предварительно находим у пациента 4-е ребро и ставим под ребро первый электрод, на котором стоит цифра 1. Для того чтобы электрод успешно стал на необходимое место, нужно использовать его свойство присасывания.
  2. 2-й электрод ставим также под 4-й ребро, только с левой стороны.
  3. Затем приступаем к наложению не 3-го, а сразу 4-го электрода. Он накладывается под 5-е ребро.
  4. Электрод под номером 3 необходимо расположить между 2-м и 4-м ребром.
  5. 5-й электрод устанавливается на 5-е ребро.
  6. 6-й электрод накладываем на уровне с 5-м, но на пару сантиметров ближе к кушетке.

Перед включением аппарата для записи ЭКГ ещё раз проверяем правильность и надёжность наложенных электродов. Только после этого можно включить электрокардиограф. Перед этим необходимо выставить скорость движения бумаги и настроить другие показатели. Во время записи пациент должен находиться в состоянии полного покоя! По окончании работы аппарата можно снять бумагу с записью кардиографа и отпустить пациента.

Снимаем ЭКГ детям

Поскольку возрастных ограничений для проведения ЭКГ нет, снимать ЭКГ детям тоже можно. Делают эту процедуру так же, как и взрослым, начиная с любого возраста, включая период новорожденности (как правило, в таком раннем возрасте ЭКГ делают исключительно для устранения подозрений на порок сердца).


Единственное различие между тем, как снять ЭКГ взрослому и ребенку, заключается в том, что к ребёнку нужен особый подход, ему нужно всё объяснить и показать, успокоить при необходимости. Электроды на теле ребёнка фиксируются на тех же местах, что и у взрослых, и должны соответствовать возрасту ребёнка. Как накладывать электроды для ЭКГ на тело, вы уже ознакомлены. Чтобы не разволновать маленького пациента, важно следить за тем, чтобы ребёнок не двигался во время проведения процедуры, всячески поддерживать его и объяснять всё, что происходит.

Очень часто педиатры при назначении ЭКГ детям рекомендуют дополнительные пробы, с физической нагрузкой или с назначением того или иного препарата. Эти пробы проводятся для того, чтобы вовремя выявить отклонения в работе сердца ребёнка, правильно диагностировать то или иное заболевание сердца, вовремя назначить лечение или развеять страхи родителей и врачей.

Как снять ЭКГ. Схема

Для того чтобы прочитать правильно запись на бумажной ленте, которую в конце процедуры выдаёт нам аппарат ЭКГ, безусловно, необходимо иметь медицинское образование. Запись должен внимательно изучить врач — терапевт или кардиолог, для того чтобы своевременно и точно установить диагноз пациенту. Итак, о чём же может нам рассказать непонятная кривая линия, состоящая из зубцов, отдельных сегментов с интервалами? Попробуем разобраться в этом.

Запись проанализирует, насколько регулярны сокращения сердца, выявит частоту сердечных сокращений, очаг возбуждения, проводящую способность сердечной мышцы, определение сердца по отношению к осям, состояние так называемого в медицине сердечных зубцов.

Сразу после прочтения кардиограммы опытный доктор сможет поставить диагноз и назначить лечение либо даст необходимые рекомендации, что значительно ускорит процесс выздоровления или убережёт от серьёзных осложнений, и самое главное — вовремя произведённая ЭКГ сможет спасти жизнь человека.

Нужно учесть то, что кардиограмма взрослого отличается от кардиограммы ребёнка или беременной женщины.

Снимают ли ЭКГ беременным женщинам

В каких же случаях назначают пройти электрокардиограмму сердца беременной женщине? Если на очередном приёме у акушера-гинеколога пациентка пожалуется на боль за грудиной, одышку, большие колебания при контроле артериального давления, головные боли, обмороки, головокружения, то, скорее всего, опытный врач назначит эту процедуру, дабы вовремя отклонить плохие подозрения и избежать неприятных последствий для здоровья будущей мамочки и её малыша. Противопоказаний для прохождения ЭКГ во время беременности нет.

Некоторые рекомендации перед запланированной процедурой прохождения ЭКГ

Перед тем как снимать ЭКГ, пациент обязательно должен быть проинструктирован о том, какие условия нужно выполнить накануне и в день снятия.

  • Накануне рекомендуют избегать нервных перенапряжений, а длительность сна должна быть не менее 8 часов.
  • В день сдачи необходим небольшой завтрак из пищи, которая легко усваивается, обязательное условие — не переедать.
  • Исключить за 1 день продукты, которые влияют на работу сердца, например, крепкий кофе или чай, острые приправы, алкогольные напитки, а также курение.
  • Не наносить на кожу рук, ног, грудной клетки крем и лосьоны, действие жирных кислот которых могут ухудшить впоследствии проводимость медицинского геля на коже перед наложением электродов.
  • Необходимо абсолютное спокойствие, перед тем как сдать ЭКГ и во время самой процедуры.
  • Обязательно в день процедуры исключить физические нагрузки.
  • Перед самой процедурой необходимо спокойно посидеть около 15-20 минут, дыхание спокойное, равномерное.

Если у обследуемого наблюдается сильная одышка, то ему нужно проходить ЭКГ не лежа, а сидя, поскольку именно в таком положении тела аппарат сможет чётко записать сердечную аритмию.

Безусловно, есть состояния, при которых проводить ЭКГ категорически нельзя, а именно:

  • При остром инфаркте миокарда.
  • Нестабильной стенокардии.
  • Сердечной недостаточности.
  • Некоторых видах аритмии неясной этиологии.
  • Тяжёлых формах стеноза аорты.
  • Синдроме ТЭЛА (тромбоэмболии легочной артерии).
  • Расслоении аневризмы аорты.
  • Острых воспалительных заболеваниях мышцы сердца и околосердечных мышц.
  • Тяжёлых инфекционных заболеваниях.
  • Тяжёлых психических заболеваниях.

ЭКГ при зеркальном расположением внутренних органов

Ззеркальное расположение внутренних органов подразумевает их расположение в другом порядке, когда сердце находится не слева, а справа. То же касается и других органов. Это довольно редкое явление, тем не менее оно встречается. Когда пациенту с зеркальным расположением внутренних органов назначают пройти ЭКГ, он должен предупредить о своей особенности медсестру, которая будет производить данную процедуру. У молодых специалистов, работающих с людьми с зеркальным расположением внутренних органов, в таком случае возникает вопрос: как снять ЭКГ? Справа (алгоритм снятия в принципе тот же) электроды располагаются на теле в том же порядке, что у обычных пациентов ставились бы слева.

Берегите своё здоровье и здоровье своих близких!

fb.ru

Использование электрокардиографов для медицинского исследования

Электрокардиография, представляющая собой методику регистрации электрических полей, которые возникают в процессе деятельности сердца, позволяет провести запись полученного изображения на дисплее или бумаге.

В результате прочтения анализа ЭКГ как наиболее информативного и неинвазивного способа медицинского исследования врач сможет легко определиться не только с правильной диагностикой, но и с последующим назначением адекватной терапии.

Электрокардиограмма пациента записывается с помощью специального медицинского оборудования – электрокардиографа. Главными составляющими такого прибора являются:

  • входные устройства (кабель отведений, электроды);
  • усилители биопотенциалов сердца;
  • регистрирующий датчик.

Особенности проведения ЭКГ

Электрокардиограмма проводится в отдельном кабинете медицинского учреждения, хотя при необходимости может записываться на дому, в палате больного или в машине неотложной помощи. Отведенное помещение должно находиться на достаточном расстоянии от возможных помех в виде источников электричества. Кушетка располагается на отдалении 1,5-2 м от провода электросети. Также рекомендуется провести экранирование кушетки, для чего нужно использовать одеяло с металлической сеткой, имеющей заземление.

Запись ЭКГ обычно проводится в положении больного лежа на кушетке с оголенными голенями, руками и верхней частью тела. При наличии противопоказаний, пациент может пребывать во время электрокардиографии в сидячем положении.

Перед процедурой пациент должен избегать чрезмерных физических нагрузок, употребления напитков и пищи, активизирующих работу сердца.

В зависимости от поставленных врачом-диагностом задач ЭКГ может проводиться как в расслабленном состоянии пациента, так и после специальных дополнительных нагрузок.

Методика наложения электродов

Обязательным элементом проведения ЭКГ являются, кроме аппарата, специальные спреи и электропроводящие гели (для ЭКГ или ультразвука).

Непосредственно наложению электродов предшествует обезжиривание кожи (с помощью спиртового раствора или используя 0,9% хлорид натрия). Под электроды следует нанести гель, обеспечивая при этом наличие некоторого расстояния между прикрепленными датчиками, что защитит от возникновения токопроводящей дорожки между соседними электродами.

Для проведения электрокардиографии накладываются:

  • 4 электрода пластинчатой формы – на нижние части внутренних поверхностей предплечий и голеней;
  • 1 (в случае одноканальной записи) или 6 (при многоканальной) электродов, снабженных грушами-присосками, – на область груди.

Каждый электрод присоединен к прибору проводом определенного цвета. Сегодня используется следующая маркировка проводов:

  • к правой руке – красного цвета;
  • к левой руке — желтого;
  • к левой ноге – зеленого;
  • к правой ноге – черного;
  • к грудному отделу – белого.

В свою очередь, использование шестиканального кардиографа имеет свою маркировку для наконечников грудных электродов:

  • V1 – красного цвета;
  • V2 – желтого;
  • V3 – зеленого;
  • V4 – коричневого;
  • V5 – черного;
  • V6 – синего.

Грудные электроды также имеют свои определенные места наложения:

  • V1 – у правого края грудной клетки в зоне IV межреберья;
  • Пониженное давление симптомы и лечение

По многочисленным просьбам о предпринятии дальнейших действий по проекту домашнего электрокардиографа (что приятно, хотя и немного напрягает), этой осенью было обновлено железо (и ПО, конечно же), и присуждено ему упомянутое в заголовке кодовое название:).В этой заметке предлагаю руководство по самостоятельному изготовлению приставки к компьютеру, с помощью которой (в комплекте с последней версией программы ECG Control) можно записывать и просматривать кардиограммы в стандартных I, II, III, avR, avL и avF отведениях (то есть всех, кроме грудных).

Прошу принять во внимание, что я не обещаю, что у Вас сразу получится изготовить приставку, и что это такое уж плевое дело. Как раз наоборот - для самостоятельного изготовления этого устройства Вы должны быть опытным радиолюбителем, и четко понимать, как и почему работают все его узлы.

Я не даю никаких гарантий касательно работы этого электрокардиографа и отказываюсь от любого вида ответственности, если Вы собрали его самостоятельно. К примеру, если собранный Вами образец ударит Вашу бабушку током (это вполне возможно при неаккуратном изготовлении) - я не имею к этому ни малейшего отношения. Договорились? Если нет - пожалуйста, закройте эту страницу и не читайте дальше ни в коем случае! 🙂
Я гарантирую только тот факт, что перед Вами последняя на этот момент, самая совершенная версия устройства, и в нашем исполнении она работает безотказно со всеми имеющимися в нашем распоряжении компьютерами и версиями ОС Windows, а также прекрасно работает на всех подопытных "пациентах".

Основные отличия этой версии платы кардиографа от предыдущей следующие:

Принципиальную схему и всё необходимое для изготовления платы в домашних условиях по ЛУТ (в формате pdf) качайте по данной ссылке. В архиве находятся, помимо схемы, готовые к распечатке (учтите, зеркалить уже ничего не нужно, печатать без масштабирования, т.е. 1:1!) верхняя и нижняя стороны платы, карта переходных отверстий (вид сверху и снизу), карта расположения элементов.

Теперь немного поясню схемотехнику и на что следует обращать особое внимание при сборке устройства.

Электрокардиограф получает питание от компьютера по ЮСБ кабелю, и содержит импульсный высокочастотный трансформаторный преобразователь питания, обеспечивающий гальваническую развязку по питанию усилителей биопотенциалов (УБП) (и пациента, с ними непосредственно связанного) от цепей компьютера, а также стабильные напряжения для питания микроконтроллера (+5В) и операционников УБП (двуполярное +5В и -5В).

Всю "умную" работу выполняет ШИМ контроллер в лице замечательной классической и нестареющей микросхемы TL494, нагруженный непосредственно на первичную обмотку трансформатора, и работающий в двухтактном режиме. Обратная связь, обеспечивающая стабильность напряжений нагрузки, осуществлена через оптопару. Обратите внимание, что эта микросхема по даташиту должна работать при минимальном напряжении питания не ниже 7В, однако прекрасно работает начиная от 3В. Конечно же, её источник опорного напряжения (5В) и всё от него зависящее работают не совсем корректно, но в нашем включении это не играет никакой роли. Что очень важно - кем микросхема произведена. Нужно покупать только контроллеры от TI, поскольку в них нету цепей защиты от пониженного напряжения питания. Если пытаться поставить контроллер от Мотороллы - ничего не получится, потому что в их варианте контроллер не работает при напряжениях меньше 5В с копейками, благодаря наличию этой, нам очень вредной, блокировки.

Огромное внимание уделите изготовлению трансформатора. Покупайте только настоящие сердечники от Эпкоса, полные названия комплектующих трансформатора приведены на схеме. Трансформатор может оказаться слабым местом в цепях гальванической развязки при неаккуратном изготовлении, что чревато поражением электрическим током. Наматывайте сначала первичную обмотку, равномерно распределяя провод по каркасу. Всего необходимо намотать 40 витков провода (20 + 20) с отводом от середины. Провод берите любой толщины, лишь бы было удобно. Потребляемая устройством мощность и число витков в обмотках ничтожны, так что мотайте хоть 0, 01 мм. Мне удобно мотать проводом около 0,1 мм. Тщательно изолируйте первичную обмотку тремя слоями ПВХ изоленты, а поверх нее намотайте таким же проводом вторичную обмотку, в которой должно быть 70 витков с отводом от середины. Для защиты от механических повреждений закройте обмотку парой слоев изоленты, и соберите вместе детали трансформатора. Сердечник должен свободно входить в каркас, усилия при сборке говорят о неаккуратно выполненной работе, и могут привести к поломке сердечника.

К цифровой части относится преобразователь интерфейса ЮСБ-ЮАРТ, связанный с микроконтроллером через оптопары, обеспечивающие гальваническую развязку шины данных. Общается преобразователь с микроконтрллером на скорости 0,5 Мбод, что и обусловило применение оптопар 6N137.

Элементы R46, R47 и VD10 можно не устанавливать, они могут понадобиться только для контроля обмена преобразователя с компьютером (что обычно интереса не представляет). К слову, все пассивные SMD компоненты кардиографа в корпусах размера 0805, довольно удобного для монтажа вручную.

Разъем для внутрисхемного программирования микроконтроллера X2 соответствует кабелю фирменного программатора Atmel STK-500. Во время монтажа микроконтроллера убедитесь, что все дорожки под ним целы, и вы собираетесь припаивать его "правильной" стороной. В случае ошибки без фена его будет отпаять довольно затруднительно, а феном легко перегреть, что нередко приводит к частичной неработоспособности (умирают пины), да и плату можно испортить.

Усилители биопотенциалов обеспечивают формирование и усиление (приблизительно в 500 раз) сигналов второго и третьего отведений, заодно с вычитанием помех путем подачи на инвертирующие входы усилителей электродов правой и левой руки сигнала с усилителя электрода левой ноги, также подаваемого на инвертирующий усилитель нейтрализации и виртуальную землю, подключаемую к правой ноге пациента. Конструкция совершенно классическая и лаконичная, и встречается нередко.

Все остальные отведения вычисляются по данным второго и третьего отведений. На всех входах установлены защитные цепи, обеспечивающие сохранность УБП при всех мыслимых и немыслимых с ним манипуляциях.

Важно точное соблюдение всех номиналов элементов в УБП, поскольку программа ECG Control откалибрована на корректную работу именно при указанных на схеме номиналах.

Электроды пациента подключайте только с помощью экранированных кабелей - это помогает значительно снизить уровень наводок от осветительной сети. Центральную жилу соединяйте с электродом и центральным контактом штеккера, оплетку со стороны штеккера соедините со вторым контактом (общий), а со стороны электрода обрежьте так, чтобы она не касалась центральной жилы и заизолируйте. Желательно использовать хлор-серебряные электроды с зажимами в виде прищепок, однако, если Вы испытываете затруднения с их приобретением, вполне можно нарезать электроды из кусочков жести-нержавейки площадью около 4 кв.см. И в любом случае увлажнение места наложения электрода на тело (лучше всего слегка подсоленной водой) благоприятно сказывается на качестве получаемой записи.

При сборке устройства учтите, что в нём нету ни одной лишней детали или переходного отверстия, и если Вам не совсем понятно их назначение - лучше сделайте так, как нарисовано на схеме. Помните, что усилители биопотенциалов очень чутко реагируют практически на всё, что обычно выражается в степени зашумленности кардиограммы.

После того, как Вы полностью соберете устройство, необходимо запрограммировать его микроконтроллер. Для этого Вам понадобится прошивка (ищем по этой ссылке) , и программатор, работающий с Atmel AVR Studio (она совершенно бесплатная и находится на сайте Атмела). Перед прошивкой установите настройки так, как показано на следующих скриншотах.

Заболевания сердца и сосудов — основная причина смерти в старческом возрасте. Но чтобы начать своевременное лечение нужно систематически делать ЭКГ сердца. Отсутствие свободного времени, очереди к врачам часто заставляют откладывать ЭКГ сердца. А делать диагностику аритмии сердца на ЭКГ часто необходимо сразу после спортивной тренировки или вообще в любой момент, когда началась такая аритмия. Всё это создаёт сложности в диагностике, которые можно решать с помощью специального карманного прибора, вашего мобильного телефона, а также поддержки врача-кардиолога.

Заболевания сердца и сосудов — основная причина смерти в старческом возрасте.

Кардиокомплекс ECG Dongle состоит из:

  1. Кардиофлешка (имеет 4 электрода — 6 отведений: I, II, III, aVR, aVL, aVF). Подключается к смартфону под управлением Android.
  2. Мобильное приложение (программа для мобильного телефона или планшета, куда будут записываться данные ЭКГ сердца).
  3. Облачный сервис (позволяет отправлять данные сразу к кардиологу по интернету и получать результат (диагноз), а также рекомендации в режиме реального времени.

Кардиофлешка

Классический аппарат для ЭКГ сердца имеет 12 отведений и позволяет диагностировать различные аритмии, нарушения проводимости сердца и различные ишемии. Кардиокомплекс ECG Dongle включает только 6 отведений и позволяет диагностировать всё то же самое кроме ишемических патологий. Почему тогда было сделано 6 отведений вместо 12? Потому что 4 электрода без труда сможет прикрепить на себя любой человек в домашних условиях, а 12 отведений (включая грудные электроды) правильно может прикрепить только специалист. Но в следующих модификациях прибора (уже как карманный прибор для самих врачей) будет иметь 12 отведений.

Бесплатное мобильное приложение и облачный сервис

Приложение можно скачать из GooglePlay на мобильном телефоне или планшете. С помощью приложения можно делать ЭКГ сердца в режиме реального времени, сохранять данные и отправлять ЭКГ сердца в облачный сервис «КардиоОблако» для получения мнения кардиолога. Можно отправить данные и своему врачу.

Как получить заключение кардиолога о Вашем ЭКГ сердца в любое время в любом месте через интернет.

Облачный сервис создан для обращения с результатами ЭКГ сердца к опытным кардиологам, которые сотрудничают с «КардиоОблаком». Заключение врача высылается на Вашу электронную почту. А я вообще сам умею читать ЭКГ сердца и сам смогу следить за своим здоровьем даже без помощи кардиолога. Кстати, для фанатов — научиться читать ЭКГ вполне возможно обладая минимумом знаний анатомии сердца. Сегодня в интернете есть много очень качественных видео уроков, где обучают, как читать ЭКГ сердца от А до Я. Но это уже под силу только для людей с техническим складом ума. В теории чтения ЭКГ много математики и физики.

Видео о том, как пользоваться Кардиокомплексом ECG Dongle для что, чтобы делать ЭКГ сердца в домашних условиях.

Когда я прочитал всю информацию, то мне всё равно было не очень понятно как пользоваться Кардиокомплексом ECG Dongle. И тут разработчики просто молодцы. Они всё это записали на видео, как будто кто-то просто взял и научил Вас, как этим пользоваться. Советую посмотреть следующие видео. На самом деле стоит немного разобраться и всё окажется очень просто.

Предлагаем Вам оформить почтовую подписку на самые новые и актуальные новости, которые появляются в науке, а также новости нашей научно-просветительской группы, чтобы ничего не упустить.

Еще одним методом получения информации о работе сердца является электрокардиография, который представляет собой недорогой метод инструментальной диагностики сердца, позволяющий проверить его работу и определить нарушения в ней. Для этой цели компанией разработана микросхема AD8232 . AD8232 представляет собой интегрированный блок обработки сигнала для ЭКГ и других биопотенциальных задач. Микросхема предназначена для получения, усиления и фильтрации слабых биопотенциальных сигналов в условиях сильных помех.

Основные характеристики AD8232:

  • Низкое потребление тока: 170 мкА
  • Напряжение питание: однополярное от 2 до 3,5 В
  • Rail to Rail выходной сигнал
  • Количество электродов: 2 или 3
  • Количество отведений ЭКГ: 1
  • Встроенный фильтр ВЧ помех
  • 2-полюсный фильтр высоких частот
  • 3-полюсный фильтр низких частот
  • Коэффициент ослабления синфазного сигнала: 80 дБ
  • Детектор контакта электродов
  • Выходной сигнал: аналоговый

На основе данной микросхемы в продаже присутствуют модули , удобные для изучения и использования, в комплект входит не только плата с AD8232 и обвязкой, но и набор электродов в зависимости от комплектации .

Схема модуля:

Для получения кардиограммы электроды прикрепляются на грудь и конечности (в зависимости от выбранного отведения), с которых снимаются сигналы электрической активности сердца.

Электрическая система сердца управляет генерацией и распространением электрических сигналов по сердечной мышце, в результате чего сердце периодически сокращается и расслабляется, перекачивая кровь. В процессе цикла работы сердца происходит упорядоченный процесс деполяризации. Деполяризация – это резкое изменение электрического состояния клетки, когда отрицательный внутренний заряд клетки становится на короткое время положительным. В сердце деполяризация начинается в специализированных клетках водителя сердечного ритма в синусно-предсердном узле. Далее волна возбуждения распространяется через атриовентикулярный (предсердно-желудочковый) узел вниз к пучку Гиса, переходя в волокна Пуркинье и далее приводит к сокращению желудочков. В отличие от других нервных клеток, которые неспособны генерировать электрический сигнал в автоколебательном режиме, клетки синусно-предсердного узла способны создавать ритмичный электрический сигнал без внешнего воздействия. Точнее, внешние воздействия (например, физическая нагрузка) влияют только на частоту колебаний, но не нужны для запуска этого «генератора». При этом происходит периодическая деполяризация и реполяризация клеток водителя ритма. В электрокардиостимуляторе также имеется генератор стабильной частоты, выполняющий роль синусно-предсердного узла. Мембраны живых клеток действуют как конденсаторы. Из-за того, что процессы в клетках электрохимические, а не электрические, деполяризация и реполяризация в них происходят намного медленнее, чем в конденсаторе той же емкости.

Расположенные на теле пациента электроды обнаруживают небольшие изменения потенциалов на коже, которые возникают вследствие деполяризации сердечной мышцы при каждом ее сокращении.

Таким образом, на основе AD8232 можно строить портативные устройства для мониторинга за здоровьем сердечной системы (ЭКГ, кардиомониторы и др.). А кроме этого данная микросхема пригодна для использования получения данных о сокращениях других мышц, что потенциально дает возможность использовать ее в бионике и протезировании. В этом случае необходимо подключать электроды к мышцам, активность которых контролируется.

Выбирая микроконтроллеры STM32 для портативных устройств рационально использовать микроконтроллеры серии L с низким потреблением тока для увеличения времени работы от аккумулятора. В нашем случае для ознакомления используется STM32F1.

В основе схемы лежит микроконтроллер STM32F103C8T6, для индикации используется TFT LCD дисплей ILI9341 с интерфейсом SPI. Схема питается от 5 вольт (можно использовать Power Bank), до необходимого уровня напряжение питания понижается с помощью стабилизатора напряжения AMS1117 3v3 или любого другого стабилизатора напряжения с нужными параметрами. Кроме дисплея в качестве индикатора сердцебиения используется бузер со встроенным генератором. При появлении пика удара сердца на время этого пика включается бузер.

Программа микроконтроллера имеет два меню: основное меню, где на дисплее строится кардиограмма и отображается частота сердечных сокращений и меню настроек, где можно задать коэффициенты для отображения кардиограммы по высоте и по ширине, а также задать порог счета сердечных сокращений. Последний параметр задается относительно окна кардиограммы от 0 до 200 – это порог, в который входят только пики ударов сердца. Настройки сохраняются в flash памяти микроконтроллера. Для надежности используется последняя страница памяти, чтобы наверняка не пересекать память, в которую записана программа микроконтроллера. Для управления меню используется три кнопки S2-S4. Кнопка S2 переключает меню, а кнопки S3 и S4 регулируют настройки. Значения настроек здесь достаточно абстрактны и привязаны к коду. Первая настройка задает время задержки между измерениями АЦП и построением графика, то есть чем больше задержка, тем больше времени нужно на заполнение экрана и тем более сжат график. Вторая настройка задает коэффициент, который делит измеренное значение АЦП - при максимальном значении 4095 делим на 20 и получаем 204,75, то есть практически весь размах значений мы укладываем в 200 пикселей экрана, отведенного под график. Изменением этого коэффициента можно увеличивать или уменьшать график по оси Y. Последняя настройка задает порог с учетом второй настройки для определения пика. Выходя за это значение программа понимает когда произошел удар сердца. Между Этими пиками фиксируется время, по которому рассчитывается частота сердечных сокращений.

В программе присутствует визуализация отклонения ЧСС (частоты сердечных сокращений), если она слишком маленькая или слишком большая график ЭКГ на дисплее начинает отрисовываться красным цветом. Модуль MOD1 это рассматриваемый модуль на основе AD8232 . Частота сердечных сокращений вычисляется как среднее значение пяти последних измерений.

Три электрода, входящих в комплект, подключаются к модулю через разъем и сами электроды крепятся на теле человека. В моем случае желтый электрод соответствует RL (правая нога), красный RA (правая рука), зеленый LA (левая рука). Так же соответственно электроды крепятся и на груди. Эти контакты электродов на модуле так же продублированы в виде контактов, к которым можно подключать свои провода с электродами. При использовании проводов из комплекта обязательно стоит прозвонить контакты, чтобы убедиться, что они соответствуют цветам, что не всегда встречается. Круглые электроды, которые входят в комплект являются одноразовыми. После их использование клейкость резко ухудшается, а гель в середине для получения надежного контакта с кожей высыхает. После первых экспериментов не стоит спешить их выбрасывать, для продолжения экспериментов достаточно смочить гель водой (я воду немного подсаливал), тогда он станет снова вязким, клейким и токопроводящим. Такие электроды самые дешевые и простые, при желании можно найти в продаже многоразовые электроды без клейких элементов, работающие как присоски. Но даже в этом случае нужно использовать специальный гель для надежного контакта электрода с кожей. Самым простым вариантом электрода может быть металлическая пластинка или шайба (монета), смоченная в соленой воде, подключенная к модулю AD8232. Такой вариант электрода максимально бюджетный и не сгодится для продолжительного использования - при высыхании воды контакт начнет ухудшаться, что приведет к ухудшению результатов измерения.

Модуль AD8232 имеет детектор подключения электродов – контакты L+ и L- выдают логическую единиц, если электроды не подключены и логический ноль, если подключены. На экране дисплея это отображается символами L+ и L-. Если их цвет зеленый, значит электроды подключены, если красный – отключены. Наличие шума на графике ЭКГ может быть связано с такими нюансами как контакт электродов и их верное расположение на теле, наличие дефектов в проводах электродов и их повреждение. В отличии от оптических датчиков, движения тела при измерении дают намного меньшие искажения графика на экране, но все же дают, так как при движении напряжения других мышц тела, расположенных близко к электроду, также дают некоторые импульсы.

Данная схема не исключает использования других датчиков с аналоговым выходом, например, затрагиваемых ранее . Достаточно выводы PA1 и PA2 микроконтроллера подключить к земле или питанию, чтобы символы на дисплее не моргали.

P.S. Данное устройство не может быть применено для самостоятельно диагностики, только квалифицированный врач может делать какие-либо заключения о здоровье. Данное устройство создавалось только в познавательных и ознакомительных целях.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК STM32

STM32F103C8

1 В блокнот
VR1 Линейный регулятор

AMS1117-3.3

1 В блокнот
MOD1 Модуль ЭКГ AD8232 1 В блокнот
HG1 TFT LCD ILI9341 1 В блокнот
Z1 Кварц 8 МГц 1 В блокнот
HL1 Светодиод 1 В блокнот
EP1 Бузер 1 Со встроенным генератором В блокнот
S1-S4 Тактовая кнопка 4 В блокнот
C1, C2 Конденсатор 22 пФ 2
Загрузка...