bookingsky.ru

"единство происхождение жизни на земле на основании знаний о клеточной теории. Формальные статистические тесты подтверждают происхождение всех живых организмов от единого предка Какие факты говорят о единстве происхождения

На сегодняшний день наука имеет много фактов, подтверждающих реальность эволюционных процессов. Какое самое важное доказательство эволюции? Эмбриологические, биохимические, анатомические, биогеографические и другие подтверждения рассмотрены в данной статье.

Единство происхождения живого мира

В это трудно проверить, но все живые организмы (бактерии, грибы, растения, животные) имеют практически тот же химический состав. В организме каждого представителя живого мира важную роль играют нуклеиновые кислоты и белки. При этом имеет место сходство не только в строении, но также и в функционировании клеток и тканей. Доказательство эволюции (эмбриологические, биогеографические, анатомические примеры можно найти в этой статье) - это важная тема, в которой должен ориентироваться каждый.

Стоит учитывать, что практические все живые существа на Земле состоят из клеток, которые считаются маленькими "кирпичиками" большой жизни. При этом их функции и строение очень похожи вне зависимости от вида организма.

Эмбриологические доказательства эволюции: кратко

Существует несколько эмбриологических доказательств, подтверждающих теорию эволюции. Многие из них были обнаружены еще в девятнадцатом веке. Современные ученые их не только не отвергли, но и подкрепили множеством других факторов.

Эмбриология - это наука, занимающаяся изучением организмов. Известно, что каждое многоклеточное животное развивается из яйцеклетки. И именно сходство в начальных этапах развитии эмбриона и есть свидетельством их общего происхождения.

Доказательство Карла Бэра

Этот знаменитый ученый, проводивший множество экспериментов, смог заметить, что все хордовые животные имеют полное сходство на начальном этапе развития. Например, сначала у эмбрионов развивается хорда, после этого нервная трубка и жабры. Именно полное сходство зародышей на начальной стадии и говорит про единство происхождения всех хордовых животных.

Уже во время более поздних этапов становятся заметными различительные черты. Ученый Карл Бэр смог заметить, что на первых стадиях эмбрионального плода можно определить только признаки типа, к которому относится организм. Только позже появляются особенности, характерные для класса, отряда и напоследок вида.

Доказательство Геккеля-Мюллера

К эмбриологическим доказательствам эволюции относят закон Геккеля-Мюллера, показывающий связь индивидуального и исторического развития. Ученые рассматривали тот факт, что каждое многоклеточное животное, развиваясь, проходит стадию одной клетки, то есть зиготы. Например, у каждого многоклеточного организма на начальных этапах развития появляется хорда, которая впоследствии заменяется позвоночником. Однако предки современных животных этой части опорно-двигательного аппарата не имели.

К эмбриологическим доказательствам эволюции относят также развитие жаберных щелей у млекопитающих и птиц. Этот факт подтверждает происхождение последних от предков из класса Рыб.

Закон Геккеля-Мюллера гласит: каждое многоклеточное животное во время своего индивидуального эмбрионального развития проходит все стадии филогенеза (исторического, эволюционного развития).

Анатомические доказательства эволюции

Существует три главных анатомических доказательств эволюции. Сюда можно отнести:

  1. Присутствие признаков, которые присутствовали у предков животных. Например, у некоторых китов могут развиваться задние конечности, а у лошадей — маленькие копытца. Такие признаки могут проявляться и у человека. Например, бывают случаи рождения ребенка с хвостиком, или же густым волосяным покровом на теле. Такие атавизмы можно считать доказательством связи с более древними организмами.
  2. Наличие в растительном и животном мире переходных форм организмов. Стоит рассмотреть эвглену зеленую. У нее одновременно есть признаки и животного, и растения. Наличие так называемых переходных форм подтверждает эволюционную теорию.
  3. Рудименты - недоразвитые органы или части тела, которые на сегодняшний день не имеют для живых организмов важного значения. Такие структуры начинают формироваться еще в зародышевом периоде, но со временем их генез прекращается, они остаются недоразвитыми. Анатомические примеры доказательства эволюции можно рассмотреть, изучая, например, китов или птиц. У первой особи есть тазовый пояс, а у второй - ненужные малые берцовые кости. Очень ярким примером считается также наличие рудиментарных глаз у слепых животных.

Биогеографические доводы

Прежде чем рассматривать эти доказательства, нужно разобраться, что же изучает биогеография. Данная наука занимается исследованием закономерностей распространения живых организмов на планете Земля. Первые биографические сведения стали появляться еще в восемнадцатом веке нашей эры.

Биогеографические доказательства эволюции можно изучить, рассматривая зоогеографическую карту. Ученые выделили на ней шесть основных областей со значительным разнообразием обитающих на них представителей.

Несмотря на различия флоры и фауны, представители зоогеографических областей все же имеют множество сходных признаков. Или же наоборот, чем далее друг от друга находятся континенты, тем больше отличаются друг от друга их жители. Например, на территории Евразии и Северной Америки можно заметить значительно сходство фауны, ведь эти материки отделились друг от друга не так давно. А вот Австралия, которая отделилась от других континентов на много миллионов лет раньше, характеризуется весьма своеобразным животным миром.

Особенности флоры и фауны на островах

Биогеографические доказательства эволюции стоит изучать также, рассматривая отдельные острова. Например, живые организмы на островах, только недавно отделившихся от материков, не сильно отличаются от животного мира на самих континентах. А вот давние острова, находящиеся на большом расстоянии от материков, имеют много отличий в животном и растительном мире.

Доказательства в области палеонтологии

Палеонтология - это наука, занимающаяся изучением остатков уже вымерших организмов. Ученые, обладающие знаниями в этой области, с уверенностью могут сказать, что организмы прошлого и настоящего имеют как множество сходств, так и различий. Это также доказательство эволюции. Эмбриологические, биогеографические, анатомические и палеонтологические доводы мы уже рассмотрели.

Филогенетические сведения

Такие сведения являются отличным примером и подтверждением эволюционного процесса, так как позволяют разобраться в особенностях развития организмов отдельных групп.

Например, знаменитый ученый В.О. Ковалевский смог продемонстрировать течение эволюции на примере лошадей. Он доказал, что данные однопалые животные произошли от пятипалых предков, населявших нашу планету около семидесяти миллионов лет назад. Животные эти были всеядными и жили в лесу. Однако изменения в климате привели к резкому уменьшению площади лесов и расширению зоны степей. Для того чтобы адаптироваться к новым условиям, этим животным пришлось научиться в них выживать. Необходимость поиска хороших пастбищ и защита от хищников стала причиной эволюции. За много поколений это привело к изменениям конечностей. Количество фаланг пальцев уменьшилось с пяти до одной. Стало другим и строение всего организма.

Доказательство эволюции (эмбриологические, биогеографические и другие примеры мы разобрали в данной статье) можно рассмотреть на примере уже вымерших видов. Естественно, теория эволюции все еще разрабатывается. Ученые со всего мира пытаются найти больше информации о развитии и изменениях живых организмов.

  • Социальные явления
  • Финансы и кризис
  • Стихии и погода
  • Наука и техника
  • Необычные явления
  • Мониторинг природы
  • Авторские разделы
  • Открываем историю
  • Экстремальный мир
  • Инфо-справка
  • Файловый архив
  • Дискуссии
  • Услуги
  • Инфофронт
  • Информация НФ ОКО
  • Экспорт RSS
  • Полезные ссылки




  • Важные темы

    Формальные статистические тесты подтверждают происхождение всех живых организмов от единого предка


    Идея о единстве происхождения всего живого является общепринятой среди биологов, однако аргументы в ее пользу имеют в основном качественный, а не количественный характер. Формальные статистические тесты, основанные на «теории выбора моделей» (model selection theory) и не использующие априорного допущения о том, что сходство белковых молекул говорит об их родстве, показали, что гипотеза о едином происхождении всего живого гораздо более правдоподобна, чем альтернативные модели, предполагающие независимое происхождение разных групп организмов от разных предков.

    Дарвин думал, что все живые организмы произошли либо от одной исходной формы, либо от нескольких (см. common descent). Дарвин оставил вопрос о количестве первопредков открытым, потому что в XIX веке наука еще не располагала средствами для решения этой проблемы. В наши дни большинство биологов уверено, что всё живое произошло от «последнего универсального общего предка» (last universal common ancestor , LUCA). Этот предок, впрочем, вряд ли был единичным организмом или «видом» в современном понимании этого слова, а, скорее, представлял собой полиморфное микробное сообщество, в котором осуществлялся активный горизонтальный обмен генами.

    Конечно, LUCA не был первым живым существом на свете: его появлению предшествовала долгая эволюция (в ходе которой, в частности, сформировался современный генетический код и аппарат синтеза белка, см.: Vetsigian, Woese, Goldenfeld. 2006. Collective evolution and the genetic code). Одновременно с LUCA, скорее всего, жили и другие существа, но их потомки вымерли. Большинство экспертов считает, что у LUCA уже были ДНК и РНК, ферменты репликации и транскрипции, рибосомы и другие компоненты аппарата синтеза белка. Сильнейшим аргументом в пользу реальности LUCA является единство генетического кода и фундаментальное сходство молекулярных систем синтеза ДНК, РНК и белков у всех живых организмов (см.: Молекулярно-генетические доказательства эволюции). Но этот аргумент, при всей его убедительности, является не количественным, а качественным. Численно оценить его силу весьма непросто.

    Если жизнь однажды зародилась на Земле или в космосе, то теоретически она могла зародиться и несколько раз. В принципе можно предположить, что современная жизнь происходит более чем от одного предка. Например, бактерии могли произойти от одного, а археи — от другого предка (такая точка зрения изредка высказывается, хотя сторонников у нее мало).

    Строгие статистические процедуры для разрешения этой дилеммы до сих пор практически не использовались. Стандартные методики сравнения нуклеотидных последовательностей ДНК и аминокислотных последовательностей белков включают в себя вычисление ряда количественных показателей, отражающих вероятность того, что наблюдаемое сходство — результат случайности (см.: The Statistics of Sequence Similarity Scores). Низкие значения этих показателей свидетельствуют о статистической значимости (неслучайности) сходства, но в принципе они не являются строгим доказательством родства (единства происхождения) сравниваемых молекул. Высокое сходство двух последовательностей теоретически может объясняться не только их общим происхождением, но и конвергентной эволюцией под действием сходных факторов отбора.

    Еще более серьезные претензии можно предъявить к большинству компьютерных программ, предназначенных для построения эволюционных деревьев. Эти программы, как правило, ориентированы на то, чтобы на основе любого набора сравниваемых последовательностей построить «наилучшее», то есть имеющее максимальную статистическую поддержку, эволюционное дерево. Эти программы просто не рассматривают возможности существования нескольких не связанных между собой деревьев, растущих из нескольких независимых корней. При помощи этих методов можно количественно оценивать и сравнивать «правдоподобие» различных деревьев, но нельзя понять, является ли модель с одним деревом более или менее правдоподобной, чем модели с двумя или тремя независимыми деревьями. Иными словами, идея единого общего предка «вмонтирована» в эти программы изначально (что отражает глубокую убежденность биологов в существовании такого предка у любой пары живых организмов).

    Дуглас Теобальд (Douglas L. Theobald) из Университета Брандейса (США) попытался преодолеть эти ограничения и разработать независимые статистические тесты для проверки гипотезы LUCA, в которые не была бы встроена идея о том, что сходство последовательностей есть мерило их родства, и тем более не была бы изначально заложена идея единства происхождения. Теобальд не пытался выяснить, насколько весомым с точки зрения статистики является единство генетического кода всех организмов. Его задача была более узкой: он хотел количественно оценить, насколько надежными (или ненадежными) являются свидетельства в пользу LUCA, заключенные в аминокислотных последовательностях ключевых белков, которые есть у всех живых существ.

    Подход Теобальда основан на тестах, разработанных в рамках теории выбора моделей (model selection theory). Для сравнения конкурирующих эволюционных моделей использовались три теста: 1) log likelihood ratio, LLR (см. Likelihood-ratiotest ; 2) Akaike information criterion (AIC); 3) log Bayes factor . Эти тесты количественно оценивают «правдоподобие» (likelihood) сравниваемых моделей (в данном случае — эволюционных реконструкций, состоящих из одного или многих деревьев) на основе двух основных критериев: 1) точности соответствия модели реальным фактам, 2) парсимоничности (экономности) модели. Иными словами, эта методика позволяет выбрать из множества моделей такую, которая наиболее точно описывает (объясняет) наблюдаемые факты, используя для этого минимальное число допущений («свободных параметров»).

    Теобальд анализировал аминокислотные последовательности 23 белков, которые есть у всех живых организмов (в основном это белки, участвующие в синтезе белка аминоацил-тРНК-синтетазы, рибосомные белки, факторы элонгации и др.). Белковые последовательности были взяты у 12 организмов: четырех бактерий, четырех архей и четырех эукариот (дрожжи, дрозофила, червь C. elegans , человек).

    Сравниваемые эволюционные модели строились на основе ряда общепринятых допущений. Предполагалось, что аминокислотные последовательности могут постепенно меняться в ходе эволюции путем замены одних аминокислот другими. Использовались разработанные ранее матрицы 20 × 20, отражающие эмпирическую вероятность или частоту замены каждой аминокислоты на любую другую. Предполагалось также, что аминокислотные замены, происходящие в разных эволюционных линиях и в разных участках белка, не скоррелированы друг с другом.

    Гипотеза единого общего предка (LUCA) сравнивалась с гипотезами о нескольких общих предках, причем вопрос об однократном или множественном зарождении жизни остался за кадром. Дело в том, что гипотеза LUCA вполне совместима с множественным зарождением жизни. В этом случае либо все остальные древние формы жизни, кроме LUCA, не оставили доживших до наших дней потомков, либо представители нескольких независимо возникших популяций в ходе эволюции приобрели способность обмениваться генами друг с другом и фактически слились в один вид. Модели, рассматриваемые Теобальдом, совместимы с обоими этими сценариями.


    Альтернативные эволюционные модели, сравнению которых посвящена обсуждаемая статья в Nature . a — всё живое происходит от двух или более разных предков, b — от единого предка. Пунктирными линиями обозначены события горизонтального генетического обмена. Рис. из популярного синопсиса к обсуждаемой статье Steel & Penny

    Автор рассмотрел два класса моделей: в первом из них горизонтальный генетический обмен не учитывался, и организмы должны были эволюционировать в соответствии с древовидными схемами. Модели второго класса допускали горизонтальный обмен (в том числе симбиогенетическое слияние двух организмов в один), поэтому схемы получались не древовидные, а сетчатые, с перемычками между ветвями. В пределах каждого класса сравнивались между собой наиболее правдоподобные модели, построенные на основе различных допущений о количестве исходных предков. Модель единого происхождения (ABE, где A — археи, B — бактерии, E — эукариоты) сравнивалась с разнообразными моделями множественного происхождения: AE + B (у архей и эукариот был один общий предок, но бактерии произошли от другого предка), AB + E, BE + A, A + B + E и т. д. Рассматривалась даже возможность независимого происхождения многоклеточных животных или человека.

    Все три использованных теста во всех случаях уверенно поддержали гипотезу LUCA в противовес альтернативным гипотезам множественного происхождения. Например, для моделей класса 1 «правдоподобие» гипотезы ABE оказалось выше, чем у ее ближайшего конкурента (модели AE + B) в 10 2860 раз. Это число даже нельзя назвать «астрономическим», в астрономии столь больших чисел нет. Примерно такую же надежную поддержку получили гипотезы класса 2 (с горизонтальным переносом) при сравнении их с гипотезами класса 1. Самой правдоподобной моделью, с огромным отрывом от всех остальных, оказалась модель LUCA 2-го класса: с единым общим предком и сетчатой структурой, обусловленной горизонтальным генетическим обменом между эволюционирующими линиями. Эта модель, в частности, адекватно отражает симбиогенетическое происхождение эукариот: некоторые из 23 рассмотренных белков эукариоты явно унаследовали от бактерий, а другие — от архей.

    Таким образом, аминокислотные последовательности ключевых белков, имеющихся в каждой живой клетке, дают мощную статистическую поддержку гипотезе LUCA. При этом главным свидетельством в пользу единства происхождения является не величина сходства как таковая (реальное сходство гомологичных белков у человека, дрожжей и бактерий на самом деле не так уж велико), а характер (или структура) этого сходства, то есть распределение одинаковых или близких по свойствам аминокислот по белковой молекуле у разных организмов. Структура наблюдаемого сходства такова, что она обеспечивает «выводимость» одних белков из других, и поэтому гипотеза единого происхождения объясняет всю картину гораздо лучше, чем другие модели. В дополнительных материалах (PDF, 352 Кб) к обсуждаемой статье Дуглас Теобальд приводит вымышленные примеры белковых молекул, которые обладают очень высоким сходством, но для которых единое происхождение оказывается менее вероятным, чем множественное. Например, так получается, если белок A сходен с белком B по одним аминокислотным позициям, а с белком C — по другим. Что касается реальных белков, то гипотеза LUCA объясняет наблюдаемое сходство наиболее «экономным» образом.

    Если включить в рассмотрение белки, которые есть не у всех, а только у некоторых организмов (например, только у эукариот), результаты остаются такими же, потому что новые типы белков так или иначе должны были возникать в разных эволюционных линиях — независимо от того, имели ли эти линии единое или разное происхождение.

    Данная работа, конечно, не является окончательным решением поставленной проблемы — скорее, ее нужно рассматривать как первый шаг. Полностью исключить все возможные альтернативные интерпретации полученных результатов довольно трудно. Для этого понадобится более детальное знание закономерностей эволюции белков и еще более сложные статистические методы.

    Источники:
    1) Douglas L. Theobald. A formal test of the theory of universal common ancestry // Nature. 2010. V. 465. P. 219-222.
    2) Mike Steel, David Penny. Common ancestry put to the test // Nature . 2010. V. 465. P. 168-169.

    Почему организмы растут и размножаются?
    какие вещества встречаются в клетках живых организмов и отсутствуют в телах неживой природы?
    Очём свидетельствует сходство состава и строения клеток всех живых организмов?

    на этом задании 30 баллов только ответьте на вопросы правильно автомобиль это тело мука это тело хлеб это тело винт это тело молоко это тело дом это тело,

    Следующий вопрос какие организмы помогают превращать отходы жизнедеятельности в пищу? Допиши в схему названия " профессий " живых организмов так, чтобы круговорот веществ стал замкнутым. Названия профессий такие: производители потребители пища квартира отходы, следующий вопрос какую роль играет солнце для всех обтателей земли? Допишите фразу, фраза такая: Солнце - ........... существования всех живых организмов. следующий вопрос. Отметь галочкой явление, в которых не происходит запасание энергии сами явления вот какие: Накопление питательных веществ в корне морковки. Образование подкожного жира у кабана. Расселение семян у одуванчика. ПОМНИ ЕСЛИ ОТВЕТИШЬ ПРАВИЛЬНО 30 БАЛЛОВ ТВОИ И ТОЛЬКО ТВОИ ЗАДАНИЯ ДАЮТСЯ ДЛЯ 3-Х КЛАССОВ ПО ПРЕДМЕТУ ОБИТАТЕЛИ ЗЕМЛИ ТАМ ТАКОГО НЕТУ ПОЭТОМУ Я ВЫБРАЛА БИОЛОГИЮ

    1.Нас окружает неживая и... природа - живые организмы. 2.Живые организмы отличаются от неживой природы тем,что они: а) дышат,б)...,в)...,г)...

    3.Живые организмы обитают: а)на суше,б)...,в)... .

    4.Из каких клеток состоят живые организмы.

    5.У растений,животных и человека различают клетки тела особые половые клетки - гаметы:

    ♀ - ...,♂ - ... .

    1. Термин экология ввел 2. основатель биогеографии 3. Раздел биологии, изучающий взаимоотношения живых организмов между собой и с неживой природой.4. в

    качестве самостоятельной науки экология начала развиваться 5. направление движения естественому отбору диктует 6. Факторы окружающей среды, воздействует на организм 7. Группа экологических факторов, обусловоенная влиянием живых организмов 8. Группа экологических факторов, обусловленна влинием живых огранизмов 9 . Группа экологических факторов,обусловленная влиянием неживой природы 10. Фактор неживой природы, дающий толчок сезонным изменениям в жизни растений и животных. 11. способность живых организмов именть свои биологичекие ритмы в зависимости от длины светогого дня 12. Самый значимый ддля выживания фактор 13. Свет, химический состав воздуха, воды и почвы, атмосферное давление и температура относяться к факторам 14. строительство железных дорог, распашка земель, создание шахт относяться 15. Хищничество или симбиоз относятьс к факторам 16. растения длинногодн обитают 17. растения короткого дня обитания 18.растени тундры относяться 19.РАстения полупустынь,степей и пустынь относяться 20. Характерный показатель популяции. 21. Совокупность всех видов живых организмов, населяющих определенную территорию и взаимодействующих между собой 22. Наиболее богатая видовым разнообразием экосистема нашей планеты 23. экологическая группа живых организмов, создающих органические вещества 24. экологичская группа живых организмов,потребляющиз готовые органические вещества, но не проводящих менерализации 25. экологическая группа живых организмов,потребляющих готовые органические вещесва и спосбствующих полному превращению их в минеральные вещества 26 . полезной энергии на следующий трофический(пищевой) уровень переходит 27 . консументы I порядка 28. консументы IIили III порядка 29. мера чувствительности сообществ живых организмов к изменениям определенных условий 30.способность сообществ (экосистем или биогеоценозов) полдерживать свое постоянство и противостоять извенению условий окружающей среды 31. низкая способность к саморегуляции, видовое разнообразие, использование дополнительных источников энергии и высокая продуктивность характерны для 32. искусственный биоценоз с наибольшей интенсивностью обмена веществ на единицу площади. с вовлечением круговорот новых материалов и выдежением большого количества неутилизируемых отходов характерны для 33. пахотными землями занято 34. города занимают 35. оболочка планеты, заселенная живыми организмами 36. автор учени о биосфере 37. верхняя граница беосферы 38. граница биосферы в глубинах океана. 39 нижняя граница биосферы в литосфере.40 . международная неправительственная организации, созданная в 1971 году, совершабщая наиболее действенные акции в защиту природы.

    Современная наука обладает очень многими фактами, доказывающими существование эволюционного процесса. Это данные биохимии, генетики, эмбриологии, анатомии, систематики, биогеографии, палеонтологии и многих других дисциплин.

    Доказательства единства происхождения органического мира. Все организмы, будь то вирусы, бактерии, растения, животные или грибы, имеют удивительно близкий элементарный химический состав. У всех у них особо важную роль в жизненных явлениях играют белки и нуклеиновые кислоты, которые построены по единому принципу и из сходных компонентов. Особенно важно подчеркнуть, что высокая степень сходства обнаруживается не только в строении биологических молекул, но и в способе их функционирования. Принципы генетического кодирования, биосинтеза белков и нуклеиновых кислот (см. § 14-16) едины для всего живого. У подавляющего большинства организмов в качестве молекул-аккумуляторов энергии используется АТФ, одинаковы также механизмы расщепления сахаров и основной энергетический цикл клетки.

    Большинство организмов имеют клеточное строение. Клетка - это основной «кирпичик» жизни. Ее строение и функционирование очень сходны у разных организмов. Деление клеток - митоз, а в половых клетках - мейоз - осуществляется принципиально одинаково у всех эукариот.

    Крайне маловероятно, чтобы такое удивительное сходство в строении и функционировании живых организмов было следствием случайного совпадения. Оно результат общности их происхождения.

    Эмбриологические доказательства эволюции. В пользу эволюционного происхождения органического мира говорят данные эмбриологии.

    Русский ученый Карл Бэр (1792-1876) обнаружил поразительное сходство зародышей различных позвоночных. Он писал: «Зародыши млекопитающих, птиц, ящериц и змей в высшей степени сходны между собой на самых ранних стадиях как в целом, так и по способу развития отдельных частей. У меня в спирту сохраняются два маленьких зародыша, которые я забыл пометить, и теперь я совершенно не в состоянии сказать, к какому классу они принадлежат. Может быть, это ящерицы, может быть - маленькие птицы, а может быть - и очень маленькие млекопитающие, до того велико сходство в устройстве головы и туловища у этих животных. Конечностей, впрочем, у этих зародышей еще нет. Но если бы даже они и были на самых ранних стадиях своего развития, то и тогда мы ничего не узнали бы, потому что ноги ящериц и млекопитающих, крылья и ноги птиц, а также руки и ноги человека развиваются из одной и той же основной формы».

    Рис. 52. Сходство начальных стадий эмбрионального развития позвоночных

    На более поздних стадиях развития различия между эмбрионами увеличиваются, появляются признаки класса, отряда, семейства (рис. 52). Ч. Дарвин рассматривал сходство ранних стадий онтогенеза у разных представителей крупных таксонов как указание на их происхождение путем эволюции от общих предков. Современные открытия в области генетики развития подтвердили дарвиновскую гипотезу. Было показано, например, что важнейшие процессы раннего онтогенеза у всех позвоночных контролируются одними и теми же генами. Более того, многие из этих генов-регуляторов обнаружены и у беспозвоночных (червей, моллюсков и членистоногих). На рисунке 53 показаны районы активности генов семейства Нох во время формирования нервной системы у дрозофилы и мыши. Последний общий предок этих двух видов животных существовал более 500 млн лет назад. Несмотря на это, у мыши и у дрозофилы сохранились в основном неизменными не только сами гены-регуляторы, но и порядок их расположения в хромосомах, и последовательность их включения в онтогенезе, и взаимное положение районов развивающейся нервной системы, в которых эти гены активны.

    Рис. 53. Сравнение районов активности генов, контролирующих развитие нервной системы у дрозофилы и мыши

    Морфологические доказательства эволюции. Особую ценность для доказательства единства происхождения органического мира представляют формы, сочетающие в себе признаки нескольких крупных систематических единиц. Существование таких промежуточных форм указывает на то, что в прежние геологические эпохи жили организмы, являющиеся родоначальниками нескольких систематических групп. Наглядным примером этого может служить одноклеточный организм эвглена зеленая. Она одновременно имеет признаки, типичные для растений (хлоропласты, способность использовать углекислый газ) и для простейших животных (жгутики, светочувствительный глазок и даже подобие ротового отверстия).

    Еще Ламарк ввел деление животных на позвоночных и беспозвоночных. Долгое время между ними не обнаруживали связующих звеньев, пока исследования отечественного ученого А. О. Ковалевского не установили связь между этими группами животных. А. О. Ковалевский доказал, что типичное на первый взгляд беспозвоночное - сидячая асцидия - развивается из свободноплавающей личинки. Она имеет хорду и очень сходна с ланцетником, представителем, как тогда считали, позвоночных. На основании таких исследований всю группу животных, к которым принадлежали и асцидии, присоединили к позвоночным и дали этому типу наименование хордовых.

    Связь между разными классами животных также хорошо иллюстрирует общность их происхождения. Яйцекладущие (например, ехидна и утконос) по ряду особенностей своей организации промежуточны между рептилиями и млекопитающими.

    Строение передних конечностей некоторых позвоночных (рис. 54), например ласты кита, дельфина, лапы крота, крыла летучей мыши, лапы крокодила, крыла птицы, руки человека, несмотря на выполнение этими органами совершенно разных функций, в принципиальных чертах сходно. Некоторые кости в скелете конечностей могут отсутствовать, другие - срастаться, относительные размеры костей могут меняться, но их гомология, т. е. сходство, основанное на общности происхождения, совершенно очевидна. Гомологичными называют такие органы, которые развиваются из одинаковых эмбриональных зачатков сходным образом.

    Рис. 54. Гомология передних конечностей позвоночных

    Некоторые органы или их части не функционируют у взрослых животных и являются для них лишними - это так называемые рудиментарные органы, или рудименты. Наличие рудиментов, так же как и гомологичных органов, тоже свидетельство общности происхождения. Рудиментарные глаза встречаются у совершенно слепых животных, ведущих подземный образ жизни. Скелет задних конечностей у кита, скрытый внутри тела, - рудимент, свидетельствующий о наземном происхождении его предков. У человека тоже известны рудиментарные органы. Таковы мышцы, двигающие ушную раковину, рудимент третьего века, или так называемой мигательной перепонки, и т. д.

    Палеонтологические доказательства эволюции. Развитие, например, хордовых осуществлялось поэтапно. Вначале возникли низшие хордовые, затем последовательно во времени возникают рыбы, амфибии, рептилии. Рептилии, в свою очередь, дают начало млекопитающим и птицам. На заре своего эволюционного развития млекопитающие были представлены небольшим числом видов, в то время процветали рептилии. Позднее резко увеличивается число видов млекопитающих и птиц и исчезает большинство видов рептилий. Таким образом, палеонтологические данные указывают на смену форм животных и растений во времени.

    В отдельных случаях палеонтология указывает на причины эволюционных преобразований. В этом отношении интересна эволюция лошадей. Современные лошади произошли от мелких всеядных предков, живших 60-70 млн лет назад в лесах и имевших пятипалую конечность. Изменение климата на Земле, повлекшее за собой сокращение площадей лесов и увеличение размеров степей, привело к тому, что предки современных лошадей начали осваивать новую среду обитания - степи. Необходимость защиты от хищников и передвижений на большие расстояния в поисках хороших пастбищ привела к преобразованию конечностей - уменьшению числа фаланг вплоть до одной (рис. 55). Параллельно изменению конечностей происходило преобразование всего организма: увеличение размеров тела, изменение формы черепа и усложнение строения зубов, возникновение свойственного травоядным млекопитающим пищеварительного тракта и многое другое.

    Рис. 55. Исторический ряд изменений в строении передней конечности лошади

    В результате изменения внешних условий под влиянием естественного отбора произошло постепенное превращение мелких пятипалых всеядных животных в крупных травоядных. Богатейший палеонтологический материал - одно из наиболее убедительных доказательств эволюционного процесса, длящегося на нашей планете уже более 3 млрд лет.

    Биогеографические доказательства эволюции. Ярким свидетельством произошедших и происходящих эволюционных изменений является распространение животных и растений по поверхности нашей планеты. Еще в эпоху Великих географических открытий путешественников и натуралистов поражало разнообразие животных в дальних странах, особенности их распространения. Однако лишь А. Уоллесу удалось привести все сведения в систему и выделить шесть биогеографических областей (рис. 56): 1) Палеоарктическую, 2) Неоарктическую (Палеоарктическую и Неоарктическую зоны часто объединяют в Голарктическую область), 3) Индо-Малайскую, 4) Эфиопскую, 5) Неотропическую и 6) Австралийскую.

    Рис. 56. Карта биогеографических зон

    Сравнение животного и растительного мира разных зон дает богатейший научный материал для доказательства эволюционного процесса. Фауна и флора Палеоарктической (Евроазиатской) и Неоарктической (Североамериканской) областей, например, имеют много общего. Это объясняется тем, что в прошлом между названными областями существовал сухопутный мост - Берингов перешеек. Неоарктическая и Неотропическая области, напротив, имеют мало общих черт, хотя в настоящее время соединены Панамским перешейком. Это объясняется изолированностью Южной Америки в течение нескольких десятков миллионов лет. После возникновения Панамского моста лишь немногим южноамериканским видам удалось проникнуть на север (дикобраз, броненосец, опоссум). Североамериканские виды преуспели в освоении южноамериканской области несколько больше. Ламы, олени, лисы, выдры, медведи проникли в Южную Америку, но не оказали существенного влияния на ее уникальный видовой состав.

    Интересен и своеобразен животный мир Австралийской области. Известно, что Австралия обособилась от Южной Азии еще до возникновения высших млекопитающих.

    Таким образом, распределение видов животных и растений по поверхности планеты и их группировка в биогеографические зоны отражают процесс исторического развития Земли и эволюции живого.

    Островные фауна и флора. Для понимания эволюционного процесса интерес представляют фауна и флора островов. Состав их фауны и флоры полностью зависит от истории происхождения островов. Острова могут быть материкового происхождения, т. е. представлять собой результат обособления части материка, или океанического происхождения (вулканические и коралловые).

    Материковые острова характеризуются фауной и флорой, близкой по составу к материковой. Однако, чем древнее остров и чем более значительна водная преграда, тем больше обнаруживается отличий. Британские острова отделились от Европы совсем недавно и имеют фауну, идентичную европейской. На давно обособившихся островах процесс расхождения видов заходит гораздо дальше. На Мадагаскаре, например, нет типичных для Африки крупных копытных: быков, антилоп, носорогов, зебр. Нет и крупных хищников (львов, леопардов, гиен), высших обезьян (павианов, мартышек). Однако много низших приматов - лемуров, которые нигде больше не встречаются.

    Совершенно иная картина обнаруживается при рассмотрении фаун океанических островов. Их видовой состав очень беден. На большинстве таких островов отсутствуют наземные млекопитающие и амфибии, неспособные преодолеть значительные водные препятствия. Вся фауна океанических островов - результат случайного занесения на них некоторых видов, обычно птиц, рептилий, насекомых. Представители таких видов, попавшие на океанические острова, получают широкие возможности для размножения. Например, на Галапагосских островах из 108 видов птиц 82 эндемичны (т. е. нигде больше не встречаются) и все 8 видов рептилий характерны только для этих островов. На Гавайских островах обнаружено большое разнообразие улиток, из которых 300 эндемичных видов принадлежат одному роду.

    Огромное количество разнообразных биогеографических фактов указывает на то, что особенности распределения живых существ на планете тесно связаны с преобразованием земной коры и с эволюционными изменениями видов.

    Молекулярные доказательства эволюции. В настоящее время практически завершена полная расшифровка генома (совокупности всех генов) человека и геномов ряда животных, растений и микроорганизмов. Известна полная последовательность нуклеотидов в ДНК у огромного числа видов живых организмов. Сравнение этих последовательностей дает новый ключ к построению родословной жизни на Земле.

    Многие мутации представляют собой замены одних нуклеотидов на другие. Мутации возникают, как правило, во время репликации ДНК (см. § 14). Отсюда следует, что, чем больше поколений прошло со времени дивергенции двух видов от общего предка, тем больше случайных замен нуклеотидов должно было накопиться в геномах этих дочерних видов. Общий предок человека и шимпанзе существовал около пяти миллионов лет назад, а общий предок человека и мыши - более 80 миллионов лет назад. Когда мы сравниваем нуклеотидные последовательности генов, например гена бета-глобина, мы видим, что различий между генами человека и шимпанзе гораздо меньше, чем между генами человека (или шимпанзе) и мыши.

    Количественная оценка этих различий позволяет построить генеалогическое древо, показывающее родство различных таксонов (видов, отрядов, семейств, классов), и определить относительное время их дивергенции. В основном это древо совпадает с теми, что были построены на основе морфологических, эмбриологических и палеонтологических данных. Однако в некоторых случаях обнаруживаются поразительные вещи. Оказалось, что киты и парнокопытные гораздо более близкие родственники, чем парнокопытные и непарнокопытные. Африканский златокрот филогенетически ближе к слону, чем к нашим кротам. Современные методы молекулярной генетики позволяют анализировать гены не только ныне живущих организмов, но и давно вымерших видов, используя следы ДНК в ископаемых останках. Это помогает проследить пути эволюции живого на Земле.

    1. 0 чем свидетельствуют следующие факты: сходная организация молекулярных процессов у всех организмов, живущих на Земле; наличие промежуточных форм и рудиментарных органов? Ответ обоснуйте.
    2. Животный и растительный мир Северной Америки и Евразии сходны между собой, а флора и фауна Северной и Южной Америки сильно различаются. Как вы объясните эти факты?
    3. Обычно на островах довольно часто встречаются эндемичные виды (больше нигде на земном шаре не встречающиеся). Чем это можно объяснить?
    4. Ископаемое животное - археоптерикс имело признаки птицы и пресмыкающегося. Дайте оценку этому факту с научной точки зрения.

    Ч. Дарвин доказал историческое развитие живой природы, но в последующие годы сбор прямых и косвенных доказательств эволюции продолжался.

    Филогенетические ряды

    Выдающиеся достижения в накоплении прямых доказательств эволюции принадлежат отечественным ученым, прежде всего В. О. Ковалевскому. Работы В. О. Ковалевского были первыми палеонтологическими исследованиями, которыми удалось показать, что одни виды происходят от других.

    Исследуя историю развития лошадей, В. О. Ковалевский показал, что современные однопалые животные происходят от мелких пятипалых всеядных предков, живших 60-70 млн. лет назад в лесах. Изменение климата Земли, повлекшее за собой сокращение площадей лесов и увеличение размеров степей, привело к тому, что предки современных лошадей начали осваивать новую среду обитания - степи. Необходимость защиты от хищников и передвижений на большие расстояния в поисках хороших пастбищ привела к преобразованию конечностей - уменьшению числа фаланг вплоть до одной (рис. 14). Параллельно изменению конечностей происходило преобразование всего организма: увеличение размеров тела, изменение формы черепа и усложнение строения зубов, возникновение свойственного травоядным млекопитающим пищеварительного тракта и многое другое.

    Рис. 14. Преобразование конечностей предков лошадей из пятипалой в трехпалую и затем в однопалую. Последняя конечность - современная лошадь.

    В. О. Ковалевский обнаружил последовательные ряды ископаемых форм лошадиных, эволюция которых совершалась в указанных направлениях. Такие ряды видов, последовательно сменяющих друг друга, называются филогенетическими и свидетельствуют о существовании эволюционного процесса.

    Переходные формы

    Установление факта постепенного эволюционного развития в линиях невысокого систематического ранга (ряды ископаемых лошадей, слонов, моллюсков) показало существование преемственности между современными и ископаемыми видами. Не в силах опровергнуть эти факты, противники эволюционной теории утверждали, что систематические группы более высокого ранга не могли произойти друг от друга, а явились результатом отдельного акта творения. Поэтому особый интерес представляют ископаемые формы, сочетающие признаки древних и более молодых групп высокого систематического ранга. Такие формы называются переходными. Примером их могут служить кистеперые рыбы, связывающие рыб с вышедшими на сушу четвероногими земноводными; семенные папоротники - переходная группа между папоротиикообразными и голосеменными и др.

    Существование переходных форм между разными типами, классами, отрядами показывает, что постепенный характер исторического развития свойствен не только низшим, но и высшим систематическим категориям.

    Гомологнчные и аналогичные органы, рудименты и атавизмы

    Сравнительно-анатомические исследования показали, что строение передних конечностей некоторых позвоночных, например ласты кита, лапы крота, крокодила, крылья птицы, летучей мыши, руки человека, несмотря на выполнение совершенно разных функций, в принципиальных чертах строения сходны. Некоторые кости в скелете конечностей могут отсутствовать, другие срастаться, относительные размеры костей могут меняться, но их гомология, т. е. сходство, основанное на общности происхождения, совершенно очевидна. Гомологичными называются такие органы, которые развиваются из одинаковых эмбриональных зачатков сходным образом (рис. 15).

    Наличие у организмов разных групп (классов, семейств и т. д.) гомологичных органов дает возможность установить степень родства между ними, проследить их эволюцию. Видоизменение органов, имеющих общее происхождение, объясняется дивергенцией по признаку строения данного органа в связи с приспособлением к среде обитания.

    Не всякое сходство органов свидетельствует в пользу их родства. Крыло бабочки и крыло птицы выполняют сходную функцию, но их строение совершенно различно. Сходство вызвано образом жизни, приспособлением к полету, возникшим независимо друг от друга у бабочек и птиц, а не родственным происхождением этих форм. Органы, имеющие внешнее сходство, вызванное сходными приспособлениями к сходным условиям жизни, но различное строение, называются аналогичными. Аналогичные органы возник-

    Рис. 15. Сходство строения передних конечностей обезьяны, летучей мыши, тюленя и лошади свидетельствует об их происхождении от единой предковой формы или в результате конвергенции - схождения признаков и не свидетельствуют о родстве между организмами.

    Рис. 16. Конвергенция по форме тела у прыгающих млекопитающих.

    Некоторые органы или их части не функционируют у взрослых животных и являются для них лишними - это рудиментарные органы, или рудименты. Наличие рудиментов, так же как и гомо-логичных органов, свидетельствует об общности происхождения живых форм. Задние конечности у кита, скрытые внутри тела,- рудимент, доказывающий наземное происхождение его предков. У человека тоже известны рудиментарные органы: мышцы, двигающие ушную раковину, рудимент третьего века и т. п.

    У некоторых организмов рудиментарные органы могут развиться до органов нормальных размеров. Такой возврат к строению органа предковых форм называется атавизмом. Среди тысяч однопалых лошадей изредка попадаются особи, у которых развиты маленькие копытца II и IV пальцев. Известны случаи появления атавистических признаков и у человека: рождение детей с первичным волосяным покровом, с длинным хвостиком и т. д. Возникновение атавизмов указывает на возможное строение того или иного органа у предковых форм.

    Сходство зародышевого развития позвоночных

    Факт единства происхождения живых организмов был установлен на основе эмбриологических исследований. Все многоклеточные животные развиваются из одной оплодотворенной яйцеклетки. В процессе индивидуального развития они проходят стадии дробления, образования двух- и трехслойного зародышей, формирования органов из зародышевых листков. Сходство зародышевого развития животных свидетельствует о единстве их происхождения.

    С особой отчетливостью сходство эмбриональных стадий выступает в пределах отдельных типов и классов. Так, на ранних стадиях развития у зародышей позвоночных (рыбы, ящерицы, кролика, человека) наблюдается поразительное сходство: все они имеют головной, туловищный и хвостовой отделы, зачатки конечностей, по бокам тела - зачатки жабр (рис. 17).

    По мере развития зародышей черты различия выступают все более явственно. Причем вначале проявляются признаки класса, к которому относятся зародыши, затем признаки отряда и на еще более поздних стадиях - признаки рода и вида. Эта закономерность в развитии зародышей указывает на их родство, происхождение от одного ствола, который в ходе эволюции распался на множество ветвей.

    Биогенетический закон

    Основываясь на приведенных выше, а также множестве других фактов, немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX в. установили закон соотношения онтогенеза, который получил название биогенетического закона. Согласно этому закону каждая особь в индивидуальном развитии (онтогенезе) повторяет историю развития своего вида (филогенез), или, короче, онтогенез есть краткое повторение филогенеза.

    Однако за короткий период индивидуального развития особь не может повторить все этапы эволюции, которая совершалась тысячи или миллионы лет. Поэтому повторение стадий исторического развития вида в зародышевом развитии происходит в сжатой форме, с выпадением ряда этапов.

    Рис. 17. Сходство начальных стадий онтогенеза позвоночных свидетельствует о родстве и указывает на пройденные в процессе филогенеза этапы

    Кроме того, эмбрионы имеют сходство не со взрослыми формами предков, а с их зародышами. Так, в онтогенезе млекопитающих и рыб имеется этап, на котором у зародышей образуются жаберные дуги. У зародыша рыбы на основании этих дуг образуется орган дыхания - жаберный аппарат. В онтогенезе млекопитающих повторяется не строение жаберного аппарата взрослых рыб, а строение закладок жаберного аппарата зародыша, на основе которых у млекопитающих развиваются совершенно иные органы (хрящи гортани и трахеи). В разработке теории онтогенеза выдающуюся роль сыграли исследования академика А. Н. Северцова. Он доказал, что изменения исторического развития обусловлены изменениями хода зародышевого развития. Наследственные изменения затрагивают все стадии жизненного цикла, в том числе и зародышевый период. Мутации, возникающие в ходе развития зародыша, как правило, нарушают взаимодействие в организме и ведут к его гибели. Однако мелкие мутации могут оказаться полезными и тогда сохранятся естественным отбором. Они передадутся потомству, включатся в историческое развитие, влияя на его ход.

    Биогеографические доказательства эволюции

    Сравнение фаун и флор разных континентов. Яркое свидетельство эволюционного процесса - распространение животных и растений по поверхности нашей планеты. Во все времена путешественников и натуралистов поражало своеобразие растительного и животного мира Австралии, Южной Америки, океанических островов и вызывало интерес сходство фауны некоторых материков, например Северной Америки и Евразии. А. Уоллес привел все сведения в систему и выделил шесть зоогеографических областей:

    1) Палеоарктическую, охватывающую Европу, Северную Африку, Северную и Среднюю Азию, Японию;

    2) Неоарктическую, включающую Северную Америку;

    3) Эфиопскую, включающую Африку к югу от пустыни Сахара;

    4) Индомалайскую, охватывающую Южную Азию и Малайский архипелаг;

    5) Неотропическую, занимающую Южную и Центральную Америку;

    6) Австралийскую, включающую Австралию, Новую Гвинею, Новую Зеландию, Тасманию, Соломоновы острова и Новую Каледонию.

    Степень сходства и различия между разными зоогео-графическимн областями неодинакова. Фауна и флора Палеоарк-тической и Неоарктической областей имеют много общего, хотя и изолированы Беринговым проливом- Неоарктическая и Неотропическая области, наоборот, существенно отличаются, хотя и соединены сухопутной связью (Панамским перешейком). В чем же причины этого сходства и различия? Очевидно, они связаны с историей формирования материков, временем их изоляции. Так, глубокое различие в фауне Неотропической и Неоарктической областей определяется тем, что сухопутная связь между ними установилась совсем недавно. Об этом свидетельствуют геологические данные. После возникновения Панамского моста лишь немногим южноамериканским видам удалось проникнуть на север (например, дикобраз, броненосец, опоссум). Североамериканские виды преуспели в освоении южноамериканской области несколько больше. Олени, лисы, выдры, медведи проникли в Южную Америку, но не оказали существенного влияния на ее уникальный видовой состав. Только здесь живут представители отряда неполнозубых (муравьеды и ленивцы), сохранились птицы гоацины, которые могут лазать по деревьям благодаря когтям на пальце крыла (как археоптерикс), и другие животные. Своеобразие фауны Южной Америки было одним из фактов, натолкнувших Ч. Дарвина на мысль об эволюции. Сходство фауны Неоарктической и Палеоарктической областей обусловлено тем, что в прошлом между ними существовал сухопутный мост - Берингов перешеек.

    Наиболее отличен от других континентов животный мир Австралии. Известно, что Австралия обособилась от Южной Азии свыше 100 млн. лет назад, еще до возникновения высших млекопитающих. Лишь в Ледниковый период сюда через острова Зонд-ского архипелага перебрались немногие плацентарные - мыши и собаки (потомок последних-австралийская собака динго). В остальном фауна Австралии очень своеобразна.

    Таким образом, чем теснее связь континентов, тем более родственные формы там обитают, чем древнее изоляция частей света друг от друга, тем больше различия между их населением.

    Фауна островов

    Видовой состав фауны и флоры островов целиком определяется историей их происхождения. Острова могут быть материковыми, представлять собой результат обособления части материка и океаническими (вулканические и коралловые острова). Растительный и животный мир первых близок по составу к материковому. На Британских островах и на Сахалине большинство видов сходно с близлежащими районами континента. Это объясняется тем, что острова лишь несколько тысяч лет назад отделились от суши. Однако чем древнее остров и чем более значительна водная преграда, тем больше обнаруживается отличий. На Мадагаскаре нет типичных для Африки крупных копытных:

    быков, антилоп, зебр, нет и крупных хищников (львов, леопардов, гиен), высших обезьян. Однако Мадагаскар - последнее убежище лемуров. Когда-то, до появления обезьян, лемуры были доминирующими приматами. Но они не могли соперничать со своими более развитыми сородичами и исчезли повсюду, кроме Мадагаскара, который отделился от материка прежде, чем эволюционировали обезьяны. Другая большая группа мадагаскарских животных - тенреки и виверры - древние, мало изменившиеся за длительный период изоляции примитивные плацентарные млекопитающие. Мадагаскар обладает широким разнообразием мест обитания, и неудивительно, что он приютил большое количество различных птиц, 46 родов которых не встречаются больше нигде в мире. Трудно представить себе более причудливое животное, чем мадагаскарский хамелеон. Хамелеоны обитают и в Африке, но мадагаскарские виды крупнее и разнообразнее. К ним принадлежит самый большой хамелеон Устале длиной 60 см. У некоторых хамелеонов Мадагаскара на конце морды расположены рога, что делает их похожими на грозных миниатюрных динозавров. Любопытно, что при изобилии ядовитых змей на африканском континенте они отсутствуют на острове. Здесь широко представлены питоны и другие неядовитые змеи. Согласно истории живого мира змеи появились довольно поздно по сравнению с другими рептилиями, причем ядовитые змеи - самые из них молодые. Не значит ли это, что Мадагаскар отделился от континента до появления там змей? Мадагаскар - прекрасное место для лягушек, которых здесь насчитывается около 150 видов.

    Иная картина обнаруживается при рассмотрении фауны океанических островов. Ее видовой состав беден и является результатом случайного занесения некоторых видов, обычно птиц, рептилий, насекомых. Наземные млекопитающие, амфибии и другие животные, не способные преодолевать значительные водные преграды, на большинстве таких островов отсутствуют. Приведем пример. Галапагосские острова удалены от берегов Южной Америки на 700 км. Это расстояние могут преодолеть только хорошо летающие формы. Оказалось, что 15% видов птиц Галапагоса представлены южноамериканскими видами, а 85% видов птиц отличны от материковых и нигде, кроме этого архипелага, не встречаются. Именно это с удивлением и наблюдал Ч. Дарвин на Галапагосских островах. Он обнаружил там птиц, которые хотя и напоминали вьюрков, виденных им в Южной Америке, но все были специализированы и мало похожи друг на друга. У этих 14 видов птиц, имевших общего предка, конкурентная борьба за корм и места гнездования была ослаблена или исчезла вовсе. Ч. Дарвин провел лишь три недели на раскаленных скальных островах. однако увиденное послужило ему материалом для размышлений на долгие годы. Особенно пристальное внимание он обратил на клюв вьюрков: у одних клюв был толстый, дробящий, у других - длинный, у третьих - острый, как ножницы. К одному из шести родов относится дятловый древесный вьюрок, одно ия редких в мире животных, использующих орудия. К сожалению, Ч. Дарвин не увидел эту замечательную птицу заработой, когда она колючкой кактуса выковыривает из древесной коры насекомых и личинок, подобно тому, как это делают дятлы клювом. Галапагосские вьюрки вошли в историю как первый пример влияния изоляции на развитие видов. Сегодня таких примеров известно много. Ч. Дарвин не побывал на Гавайских островах, где эффект изоляции проявляется еще более наглядно на гавайских цветочницах и улитках, прежде всего потому, что они обитают на этих отдаленных островах много дольше, чем вьюрки на Галапагосах.

    
    Загрузка...