bookingsky.ru

Есть ли люди невосприимчивые к вич. Устойчивость вич к различным условиям внешней среды. Наследственный иммунитет к ВИЧ-инфекции

Кандидат биологических наук А. ЛУШНИКОВА. По материалам "Scientific American".

Вирус иммунодефицита человека (ВИЧ) открыли в 1983 году сразу в двух лабораториях: в Институте Пастера во Франции, под руководством Люка Монтанье, и в Национальном институте рака (США), Роберт Галло и его сотрудники. Сейчас уже ни у кого нет сомнений в том, что ВИЧ вызывает страшную болезнь, "чуму ХХ века" - СПИД (это название расшифровывается как "синдром приобретенного иммунодефицита"). Однако за более чем десятилетнюю историю исследований накопилось немало загадок, связанных с развитием этого заболевания. Например, у некоторых зараженных вирусом иммунодефицита людей признаки болезни появляются спустя несколько лет или не появляются вовсе. Оказалось, что существуют люди, устойчивые к СПИДу. Как много таких людей, какими особенностями они обладают, не есть ли это ключ к лечению страшной болезни? На эти вопросы пытается ответить публикуемая статья.

Так устроен вирус иммунодефицита человека. Внутри него находится наследственный материал - две молекулы РНК, на поверхности - белки оболочки.

У человека с обычным иммунитетом клетки-киллеры, несущие на своей поверхности молекулу-рецептор СD8, выделяют гормоноподобные вещества хемокины.

Если человек имеет нормальный ген ССR5, то под контролем этого гена в клетках-мишенях вырабатывается белок, который совместно с другим белком (СD4) служит "посадочной площадкой" для вируса иммунодефицита на поверхности клетки.

Иголка в стоге сена

Генетикам давно известны гены устойчивости к некоторым вирусам у мышей, например к вирусу лейкоза. Но существуют ли подобные гены у человека, и если да, то какова их роль в защите против СПИДа?

Стивен О"Брайн и Михаэль Дин со своими коллегами из Национального института рака США много лет вели поиск таких генов у человека.

В начале 80-х годов американские ученые исследовали множество людей, которые по тем или иным причинам могли заразиться вирусом иммунодефицита. Они проанализировали тысячи образцов крови и обнаружили, казалось бы, необъяснимое явление: у 10-25% обследованных вирус вообще не выявляется, а около 1% носителей ВИЧ - относительно здоровы, признаки СПИДа у них либо отсутствуют, либо выражены очень слабо, а иммунная система в полном порядке. Неужели существует какая-то устойчивость к вирусу у некоторых людей? И если да, то с чем она связана?

Опыты на лабораторных мышах, крысах, морских свинках и кроликах показали, что устойчивость к различным вирусным инфекциям часто определяется целым набором генов. Оказалось, что сходный механизм определяет и устойчивость к вирусу иммунодефицита человека.

Известно, что многие гены ответственны за выработку определенных белков. Часто бывает, что один и тот же ген существует в нескольких измененных вариантах. Такие "многоликие" гены называются полиморфными, а их варианты могут отвечать за выработку различных белков, которые по-разному ведут себя в клетке.

Сравнив восприимчивость к вирусам у мышей, несущих множество разнообразных наборов генов, и у мышей с небольшим числом генных вариантов, ученые пришли к выводу, что чем разнороднее генетически были животные, тем реже они заражались вирусом. В таком случае можно предположить, что в генетически разнообразных человеческих популяциях генные варианты, определяющие устойчивость к ВИЧ, должны встречаться достаточно часто. Анализ заболеваемости СПИДом среди американцев различных национальностей выявил еще одну особенность: более устойчивы американцы европейского происхождения, у африканцев и азиатов устойчивость близка к нулю. Чем объяснить такие различия?

Ответ на этот вопрос предложил в середине 80-х годов американский вирусолог Джей Леви из Калифорнийского университета в Сан-Франциско. Леви и его коллеги пытались выяснить, какие именно клетки в организме поражает вирус. Они обнаружили, что после того, как вирус заражает иммунные клетки, они легко узнаются иммунными клетками другого типа, так называемыми Т-киллерами (убийцами). Киллеры разрушают зараженные вирусом клетки, препятствуя дальнейшему размножению вируса. Клетки-убийцы несут на своей поверхности особую молекулу - рецептор CD8. Она, как принимающая антенна, "узнает" сигналы от клеток, зараженных вирусом, и клетки-убийцы уничтожают их. Если из крови удалить все клетки, несущие молекулу CD8, то вскоре в организме обнаруживаются многочисленные вирусные частицы, происходит быстрое размножение вируса и разрушение лимфоцитов. Не в этом ли ключ к разгадке?

В 1995 году группа американских ученых под руководством Р. Галло обнаружила вещества, которые вырабатываются в клетках-киллерах, несущих молекулы CD8, и подавляют размножение ВИЧ. Защитные вещества оказались гормоноподобными молекулами, называемыми хемокинами. Это небольшие белки, которые прикрепляются к молекулам-рецепторам на поверхности иммунных клеток, когда клетки направляются к месту воспаления или заражения. Оставалось найти "ворота", сквозь которые проникают в иммунные клетки вирусные частицы, то есть понять, с какими именно рецепторами взаимодействуют хемокины.

Ахиллесова пята иммунных клеток

Вскоре после открытия хемокинов Эдвард Бергер, биохимик из Национального института аллергических и инфекционных болезней в Бетезде, США, обнаружил в иммунных клетках, в первую очередь поражаемых вирусом (их называют клетки-мишени), сложный по строению белок. Этот белок как бы пронизывает мембраны клеток и содействует "посадке" и слиянию вирусных частиц с оболочкой иммунных клеток. Бергер назвал этот белок "фузин", от английского слова fusion - слияние. Оказалось, что фузин родствен белкам-рецепторам хемокинов. Не служит ли этот белок "входными воротами" иммунных клеток, через которые вирус проникает внутрь? В таком случае взаимодействие с фузином какого-нибудь другого вещества закроет доступ вирусным частицам в клетку: представьте, что в скважину замка вставляется ключ, и вирусная "лазейка" исчезает. Казалось бы, все встало на свои места, и взаимосвязь хемокины - фузин - ВИЧ уже не вызывала сомнений. Но верна ли эта схема для всех типов клеток, зараженных вирусом?

Пока молекулярные биологи распутывали сложный клубок событий, происходящих на поверхности клеток, генетики продолжали поиск генов устойчивости к вирусу иммунодефицита у людей. Американские исследователи из Национального института рака получили культуры клеток крови и различных тканей от сотен пациентов, зараженных ВИЧ. Из этих клеток выделили ДНК для поиска генов устойчивости.

Чтобы понять, насколько сложна эта задача, достаточно вспомнить, что в хромосомах человека содержится около 100 тысяч различных генов. Проверка хотя бы сотой доли этих генов потребовала бы нескольких лет напряженной работы. Круг генов-кандидатов заметно сузился, когда ученые сосредоточили свое внимание на клетках, которые прежде всего поражает вирус, - так называемых клетках-мишенях.

Уравнение со многими неизвестными

Одна из особенностей вируса иммунодефицита заключается в том, что его гены внедряются в наследственное вещество зараженной клетки и "затаиваются" там на время. Пока эта клетка растет и размножается, вирусные гены воспроизводятся вместе с собственными генами клетки. Затем они попадают в дочерние клетки и заражают их.

Из множества людей с высоким риском заражения ВИЧ отобрали зараженных вирусом и тех, кто не стал носителем ВИЧ, несмотря на постоянные контакты с больными. Среди зараженных выделили группы относительно здоровых и людей с быстро развивающимися признаками СПИДа, которые страдали сопутствующими заболеваниями: пневмонией, раком кожи и другими. Ученые изучили разные варианты взаимодействия вируса с организмом человека. Различный исход этого взаимодействия, по-видимому, зависел от набора генов у обследованных людей.

Выяснилось, что люди, устойчивые к СПИДу, имеют мутантные, измененные гены рецептора хемокинов - молекулы, к которой прикрепляется вирус, чтобы проникнуть в иммунную клетку. У них контакт иммунной клетки с вирусом невозможен, поскольку нет "принимающего устройства".

В это же время бельгийские ученые Михаэль Симпсон и Марк Парментье выделили ген другого рецептора. Им оказался белок, который также служит рецептором для связывания ВИЧ на поверхности иммунных клеток. Только взаимодействие этих двух молекул-рецепторов на поверхности иммунной клетки создает "посадочную площадку" для вируса.

Итак, основными "виновниками" заражения клеток вирусом иммунодефицита служат молекулы-рецепторы, названные CCR5 и CD4. Возник вопрос: что происходит с этими рецепторами при устойчивости к ВИЧ?

В июле 1996 года американская исследовательница Мэри Керингтон из Института рака сообщила, что нормальный ген рецептора ССR5 обнаруживается лишь у 1/5 обследованных ею пациентов. Дальнейший поиск вариантов этого гена среди двух тысяч больных дал удивительные результаты. Оказалось, что у 3% людей, не заразившихся вирусом, несмотря на контакты с больными, ген рецептора ССR5 измененный, мутантный. Например, при обследовании двух нью-йоркских гомосексуалистов - здоровых, несмотря на контакты с зараженными, выяснилось, что в их клетках образуется мутантный белок CCR5, не способный взаимодействовать с вирусными частицами. Подобные генетические варианты были найдены лишь у американцев европейского происхождения или у выходцев из западной Азии, у американцев же африканского и восточноазиатского происхождения не нашли "защитных" генов.

Оказалось также, что устойчивость некоторых пациентов к инфекции лишь временная, если они получили "спасительную" мутацию только от одного из своих родителей. Через несколько лет после заражения количество иммунных клеток в крови таких пациентов снижалось в 5 раз, и на этом фоне развивались сопутствующие СПИДу осложнения. Таким образом, неуязвимыми для ВИЧ были только носители сразу двух мутантных генов.

Но у обладателей одного мутантного гена признаки СПИДа все же развивались медленнее, чем у носителей двух нормальных генов, и такие больные лучше поддавались лечению.

Продолжение следует

Не так давно исследователи обнаружили разновидности чрезвычайно агрессивных вирусов. Людей, зараженных такими вирусами, не спасает даже присутствие двух мутантных генов, обеспечивающих устойчивость к ВИЧ.

Это заставляет продолжать поиск генов устойчивости к ВИЧ. Недавно американские исследователи О"Брайн и М. Дин с коллегами обнаружили ген, который, присутствуя у людей лишь в одной копии, задерживает развитие СПИДа на 2-3 года и более. Значит ли это, что появилось новое оружие в борьбе с вирусом, вызывающим СПИД? Скорее всего, ученые приоткрыли еще одну завесу над загадками ВИЧ, и это поможет медикам в поисках средств лечения "чумы ХХ века". В многочисленных популяциях американцев афро-азиатского происхождения мутантные гены так и не найдены, но тем не менее есть небольшие группы здоровых людей, контактировавших с зараженными. Это говорит о существовании других генов защиты иммунной системы от страшной инфекции. Пока можно лишь предполагать, что в различных популяциях человека сложились свои системы генетической защиты. По-видимому, и для других инфекционных заболеваний, включая вирусный гепатит, также имеются гены устойчивости к вирусам-возбудителям. Теперь уже никто из генетиков не сомневается в существовании таких генов для вируса иммунодефицита. Исследования последних лет дали надежду найти решение такой, казалось бы, неразрешимой проблемы, как борьба со СПИДом. Кто станет победителем в противоборстве ВИЧ - человек, покажет будущее.

Наука - здравоохранению

КАК ЛЕЧИТЬ СПИД. ПОИСК СТРАТЕГИИ

Результаты исследований последних лет заставили задуматься не только ученых и практических врачей, занимающихся проблемами СПИДа, но и фармацевтов. Раньше основное внимание уделялось комбинированному лечению инфекции, направленному против вируса. Применялись препараты, препятствующие размножению вируса в клетке: невипарин и атевирдин. Это так называемая группа ингибиторов обратной транскриптазы ВИЧ, которые не дают наследственному материалу вируса внедряться в ДНК иммунных клеток. Их сочетают с аналогами нуклеозидов типа зидовудина, диданозина и ставудина, которые облегчают течение болезни. Однако эти средства токсичны и обладают побочными действиями на организм, поэтому их нельзя считать оптимальными. Им на смену все чаще приходят более совершенные средства воздействия на ВИЧ.

В последнее время появилась возможность препятствовать "посадке" вирусных частиц на поверхность клеток. Известно, что этот процесс происходит за счет связывания вирусного белка gр120 с клеточными рецепторами. Искусственное блокирование мест связывания ВИЧ с помощью хемокинов должно защищать клетки от вторжения ВИЧ. Для этого нужно разработать специальные препараты-блокаторы.

Другой путь - получение антител, которые будут связываться с рецепторами ССR5, создающими "посадочную площадку". Такие антитела будут препятствовать взаимодействию этих рецепторов с вирусом, не давая доступа ВИЧ в клетки. Кроме того, можно вводить в организм фрагменты молекул ССR5. В ответ на это иммунная система начнет вырабатывать антитела к данному белку, которые также перекроют доступ к нему вирусных частиц.

Наиболее дорогостоящий способ обезопасить вирусные частицы - ввести в иммунные клетки новые мутантные гены. В результате сборка рецептора для "посадки" вируса на поверхности "оперированных" клеток прекратится, и вирусные частицы не смогут заразить такие клетки. Подобная защищающая терапия, по-видимому, наиболее перспективна при лечении больных СПИДом, хотя и весьма дорого стоит.

При лечении сопровождающих СПИД раковых заболеваний врачи чаще всего прибегают к высоким дозам химических препаратов и к облучению опухолей, что нарушает кроветворение и требует пересадки больным здорового костного мозга. А что, если в качестве донорских кроветворных клеток пересадить больному костный мозг, взятый от людей, генетически устойчивых к инфекции ВИЧ? Можно предположить, что после такой пересадки распространение вируса в организме пациента будет остановлено: ведь донорские клетки устойчивы к инфекции, поскольку не имеют рецепторов, позволяющих вирусу проникнуть через клеточную мембрану. Однако эту привлекательную идею вряд ли удастся воплотить в практику полностью. Дело в том, что иммунологические различия между пациентом и донором, как правило, приводят к отторжению пересаженной ткани, а иногда и к более серьезным последствиям, когда донорские клетки атакуют чужеродные для них клетки реципиента, вызывая их массовую гибель.

Словарик

Т-киллеры - иммунные клетки, которые уничтожают зараженные вирусом клетки.

Рецепторы клеток - особые молекулы на поверхности, которые служат "опознавательным знаком" для вирусных частиц и других клеток.

Ген рецептора - ген, ответственный за выработку соответствующего белка.

Хемокины - гормоноподобные вещества на поверхности иммунных клеток, которые подавляют размножение вируса в организме.

Культура клеток - клетки, развивающиеся вне организма, в питательной среде пробирки.

Мутантные гены - измененные гены, не способные контролировать выработку нужного белка.

Клетки-мишени - иммунные клетки, которые в первую очередь поражает вирус.

Цифры и факты

Сегодня в мире 29 миллионов зараженных вирусом иммунодефицита. 1,5 миллиона человек уже умерли от вызванного этим заражением СПИДа.

Самый неблагополучный по СПИДу регион - Африка. В Европе лидируют Испания, Италия, Франция, Германия. С 1997 года к этим странам присоединилась Россия. На территории бывшего СССР зараженность ВИЧ распределяется так: 70% - Украина, 18,2% - Россия, 5,4% - Беларусь, 1,9% - Молдова, 1,3% - Казахстан, остальные - менее 0,5%.

К 1 декабря 1997 года в России официально зарегистрировано около 7000 зараженных вирусом иммунодефицита, в основном при передаче инфекции половым путем.

В России и странах ближнего зарубежья существует более 80 центров по профилактике и борьбе со СПИДом.

Иммунная система некоторых больных способна эффективно противостоять вирусу иммунодефицита человека без помощи лекарств, полагают американские ученые. По мнению сотрудников Университета Джонса Хопкинса, существование этого феномена доказывает описанная ими история болезни ВИЧ-инфицированных супругов из США.

Известно, что в некоторых случаях заражение ВИЧ не приводит к разрушению иммунной системы пациента. Ученые расходятся в объяснении этого редкого явления: по одной версии, способность противостоять инфекции у таких больных обусловлена особенностями их иммунной системы, по другой - замедленное развитие болезни объясняется генетическими дефектами самого вируса иммунодефицита.

Чтобы прояснить механизмы экстраординарной устойчивости к ВИЧ-инфекции, ученые обратились к истории болезни чернокожей супружеской пары, живущей в браке более двадцати лет. Десять лет назад мужчина заразился ВИЧ при внутривенном введении наркотиков, вскоре инфекция была обнаружена и у женщины.

Сейчас зараженный мужчина находится на поздней стадии заболевания: ежедневно он вынужден принимать большие дозы антиретровирусных препаратов. В то же время у его супруги ВИЧ-инфекция по-прежнему протекает бессимптомно: ей не требуется антиретровирусная терапия, а содержание вирусных частиц в ее крови остается на минимальном уровне.

Лабораторные исследования образцов вируса из крови супругов однозначно подтвердили, что оба они были заражены одним и тем же штаммом вируса. Следующая серия опытов показала, что иммунная система пациентов по-разному справляется с вирусной инфекцией. Клетки-киллеры женщины выявляли и уничтожали вирус в зараженных клетках в три раза быстрее, чем аналогичные клетки мужчины.

Мутации, снижающие способность вируса иммунодефицита к размножению, были обнаружены в образцах ВИЧ, взятых у обоих партнеров. В то же время у женщины ослабленные образцы вируса преобладали, тогда как у мужчины их было значительно меньше. По мнению ученых, благоприятный для пациентки отбор ослабленных вариантов вируса не играл определяющей роли в развитии болезни и, напротив, стал возможен благодаря изначально повышенной активности ее иммунной системы.

По мнению авторов исследования, полученные ими данные открывают новые возможности для разработчиков вакцин и лекарств для лечения ВИЧ-инфекции. Вполне возможно, полагают они, что механизм иммунной защиты отдельных устойчивых к вирусу больных в будущем можно будет искусственно моделировать с помощью лекарств. Отчет об исследовании опубликован в

Несколько лет назад был описан генотип человека, устойчивый к ВИЧ. Проникновение вируса в иммунную клетку связано с его взаимодействием с поверхностным рецептором: белком CCR5. Но делеция (утеря участка гена) CCR5-дельта32 приводит к невосприимчивости её носителя к ВИЧ. Предполагается, что эта мутация возникла примерно две с половиной тысячи лет назад и со временем распространилась в Европе.Сейчас к ВИЧ фактически устойчив в среднем 1 % европейцев, 10-15 % европейцев имеют частичную сопротивляемость к ВИЧ. Учёные Ливерпульского университета объясняют такую неравномерность тем, что мутация CCR5 усиливает сопротивляемость к бубонной чуме. Поэтому после эпидемий «чёрной смерти» 1347 года (а в Скандинавии ещё и 1711 года) доля этого генотипа выросла.Мутация в гене CCR2 также уменьшает шанс проникновения ВИЧ в клетку и приводит к задержке развития СПИД.Существует небольшой процент людей (около 10 % всех ВИЧ-положительных), в крови которых присутствует вирус, однако СПИД у них не развивается в течение долгого времени (т. н. непрогрессоры).Обнаружено, что одним из главных элементов антивирусной защиты человека и других приматов является белок TRIM5a, способный распознавать капсид вирусных частиц и препятствовать размножению вируса в клетке. Данный белок у человека и других приматов имеет различия, которые обуславливают врожденную устойчивость шимпанзе к ВИЧ и родственным ему вирусам, а у человека - врожденную устойчивость к вирусу PtERV1.

Другой важный элемент антивирусной защиты - интерферон-индуцируемый трансмембранный белок CD317/BST-2 (bone marrow stromal antigen 2), получивший также название «tetherin» за его способность подавлять выделение вновь образовавшихся дочерних вирионов посредством их удержания на поверхности клетки. CD317 - трансмембранный белок 2го типа с необычной топологией - трансмембранный домен рядом с N-концом и гликозилфосфатидилинозитол (GPI) на С-конце; между ними расположен внеклеточный домен. Показано, что CD317 непосредственно взаимодействует со зрелыми дочерними вирионами, «привязывая» их к поверхности клетки. Для объяснения механизма такого «привязывания» предложено четыре альтернативных модели, согласно которым две молекулы CD317 формируют параллельный гомодимер; один или два гомодимера связываются одновременно с одним вирионом и клеточной мембраной. При этом с мембраной вириона взаимодействуют либо оба мембранных «якоря» (трансмембранный домен и GPI) одной из молекул CD317, либо один из них. Спектр активности CD317 включает, по крайней мере, четыре семейства вирусов: ретровирусы, филовирусы, аренавирусы и герпесвирусы. Активность данного клеточного фактора ингибируется белками Vpu ВИЧ-1, Env ВИЧ-2 и SIV, Nef SIV, гликопротеином оболочки вируса Эбола и белком К5 герпесвируса саркомы Капоши. Обнаружен кофактор белка CD317 - клеточный белок ВСА2 (Breast cancer-associated gene 2; Rabring7, ZNF364, RNF115) - Е3 убиквитин-лигаза класса RING. BCA2 усиливает интернализацию вирионов ВИЧ-1, «привязанных» белком CD317 к клеточной поверхности, в CD63+ внутриклеточные везикулы с их последующим разрушением в лизосомах.




СОЧЕТАНИЕ ВИЧ С ДРУГИМИ ИНФЕКЦИЯМИ И ЗАБОЛЕВАНИЯМИ

Наличие в организме двух или более инфекций называют коинфекцией. Коинфекции играют большую роль в распространении эпидемии СПИДа и в развитии ВИЧ-заболевания в организме конкретного человека. Сейчас многие медицинские и профилактические центры во всем мире рассматривают проблемы ВИЧ-инфекции, инфекций, передающихся половым путем, а также туберкулеза как единое направление работы.В программах профилактики часто уделяется основное или исключительное внимание ВИЧ-отрицательным людям, которых стремятся уберечь от заражения. Однако правила безопасного поведения и предотвращения инфекций крайне важны и для ВИЧ-положительных, поскольку заражение ИППП, туберкулезом, гепатитами или реинфицирование ВИЧ может пагубно сказаться на их здоровье и качестве жизни.

ВИЧ и ИППП

Долгое время вопросы ВИЧ и других инфекций, передаваемых половым путем (ИППП), рассматривались независимо друг от друга. На самом деле между эпидемией СПИДа и распространением ИППП существует тесная взаимосвязь. Инфекции, передающиеся половым путем способствуют эпидемии СПИДа, кроме того многие ИППП особенно опасны для ВИЧ-положительных. Такие ИППП как герпес, гонорея, сифилис, цитомегаловирусная инфекция способны привести к тяжелым осложнениям при ВИЧ-инфекции. Необходимы специальные программы по безопасному сексу для людей, живущих с ВИЧ. Также при ВИЧ-инфекции большую роль играют своевременная диагностика и лечение ИППП.

ВИЧ и гепатиты

Вирусные гепатиты - одна из наиболее частых причин хронических болезней печени, особенно опасных для людей с ВИЧ. Большой процент ВИЧ-положительных одновременно являются носителями вируса гепатитов В и С, которые передаются тем же путем, что и ВИЧ.Всем ВИЧ-положительным рекомендуется обследоваться на гепатиты и в случае отрицательного анализа избегать заражения, а в случае положительного - постараться снизить риск хронических заболеваний печени. В отличие от гепатитов В, С и D, путь передачи которых сходен с ВИЧ, вирусные гепатиты А и Е передаются подобно кишечным инфекциям.Гепатит А - вирусная инфекция, передаваемая фекально-оральным путем, чаще всего через загрязненную воду или пищу; переболев гепатитом А, человек получает пожизненный иммунитет к данному возбудителю. Профилактика - контроль за чистотой питьевой воды и соблюдение личной гигиены. Вирус гепатита Е передается фекально-оральным путем; профилактика его такая же, как гепатита А.

Гепатиты В и D

Гепатит В передается так же, как и ВИЧ, при непосредственном контакте с жидкостями тела зараженного человека - половым путем, через шприцы или другие колющие и режущие инструменты, при переливании крови, от матери ребенку. Подобно ВИЧ, этот вирус не передается при бытовом контакте, через пищу, воду, воздушно-капельным путем. Главное отличие гепатита В от ВИЧ - его более высокая заразительность: вероятность передачи гепатита в 100-300 раз выше, чем вероятность передачи ВИЧ при таком же контакте с инфекцией. Из-за высокой устойчивости вируса гепатита В существует реальный риск заражения при пирсинге или нанесении татуировок нестерильными инструментами (при ВИЧ такой риск значительно ниже). Из всех вирусных гепатитов В с наибольшей вероятностью передается половым путем. Около 30% всех заражений гепатитом В проходят бессимптомно; в таком случае диагноз можно поставить только по анализу крови. К симптомам гепатита относится желтуха (необычная желтизна кожи или глазных белков), потеря аппетита, тошнота, боль в желудке или суставах, повышенная утомляемость и некоторые другие. У части зараженных гепатит В переходит в хроническую форму; хронический гепатит в некоторых случаях ведет к тяжелым поражениям печени, включая цирроз. Для лечения хронического гепатита В применяются альфа-интерферон и ламивудин, эффективные примерно у 40% пациентов, однако радикально излечивающего средства не существует. Поэтому очень важна профилактика заражения, аналогичная профилактике ВИЧ-инфекции. К счастью, в отличие от ВИЧ, от гепатита В существует вакцина, обеспечивающая полную защиту. Гепатит D (дельта) вызывается дефективным РНК-содержащим вирусом, репликация которого возможна только в присутствии гепатита В. Заражение может произойти только в сочетании с заражением гепатитом В (одновременно или впоследствии, при присоединении одной инфекции к другой). При сочетании острых инфекций В и D повышается риск осложнений. Когда гепатит D присоединяется к хроническому гепатиту В, вероятность развития тяжелых поражений печени возрастает примерно вдвое. Гепатит D передается главным образом при инъекциях; заражение половым путем и передача от матери младенцу менее вероятны, чем при гепатите В. Меры профилактики - защита от заражения гепатитом В; при наличии гепатита В - избегать рискованного поведения, чтобы не "присоединить" к нему гепатит D.

Гепатит С

Наиболее подвержены заражению гепатитом С потребители инъекционных наркотиков (50-90%), так как этот вирус передается главным образом через кровь. Риск передачи гепатита С половым путем гораздо ниже, чем гепатита В или ВИЧ-инфекции, но он тем не менее существует. Нет подтвержденных сведений о передаче гепатита С при татуировках и пирсинге. Главный способ профилактики гепатита С - прекращение инъекционного употребления наркотиков либо использование стерильных инструментов. Зубные щетки, бритвы и другие предметы, которые могут иметь контакт с кровью, должны быть индивидуальными. Примерно у 70% зараженных вирусом гепатита развивается хронический гепатит С. В свою очередь хронический гепатит С в 70% случаев приводит к поражению печени. Сочетание ВИЧ-инфекции и гепатита С ассоциируется с более быстрым развитием заболеваний печени и с высоким риском смертельно опасного цирроза печени. Пока не установлено, как гепатит С влияет на прогрессирование ВИЧ-заболевания, хотя по некоторым данным гепатит может ускорить переход в стадию СПИДа.Комбинированная противовирусная терапия ВИЧ-инфекции не помогает лечению гепатита С; в большинстве случаев его лечат интерфероном или альфа-интерфероном и рибавирином. При терапии интерфероном и комбинированной терапии ВИЧ необходимо полное воздержание от алкоголя и наркотиков.

ВИЧ и туберкулез

На данный момент туберкулез - одна из главных причин смертности ВИЧ-положительных, и чем выше уровень распространенности ВИЧ-инфекции в стране или сообществе, тем выше уровень смертности от туберкулеза.Между туберкулезом и ВИЧ существует тесная связь. Результаты исследований, проведенных в ряде развивающихся стран, показывают, что до 70% больных туберкулезом являются носителями ВИЧ. Кроме того, примерно у 50% ВИЧ-положительных с высокой вероятностью можно ожидать развития туберкулеза, поскольку ослабление иммунной системы делает организм особенно уязвимым. Туберкулез является основным проявлением СПИДа среди более чем половины всех случаев болезни в развивающихся странах, где живет примерно 95% всех ВИЧ-положительных. В промышленно развитых странах, где туберкулез был искоренен почти повсеместно, наблюдаются признаки возвращения этой болезни в связи с эпидемией СПИДа.Около 13 миллионов человек в мире являются одновременно носителями ВИЧ и возбудителя туберкулеза. Туберкулез, как и обычные простудные заболевания, передается воздушно-капельным путем. Он распространяется больным человеком при кашле, сплевывании или чихании. Туберкулез может поражать различные органы, но чаще всего развивается в легких. Борьба с туберкулезом в сочетании с ВИЧ - это вопрос не только здравоохранения, но и прав человека. Распространению туберкулеза способствуют нищета, отсутствие жилья или нездоровые жилищные условия, недостаточное питание, употребление наркотиков, психический стресс. В отличие от ВИЧ туберкулез излечим - даже у ВИЧ-положительных. Короткий курс лечения - DOTS - позволяет вылечить большинство больных туберкулезом, при этом стоимость лекарственных препаратов составляет всего 10-15 долларов США на одного больного. При отсутствии лечения один больной туберкулезом способен заразить 10-15 человек в год. К сожалению, несмотря на наличие недорогого и эффективного лечения, ресурсы, выделяемые на борьбу с туберкулезом, по-прежнему недостаточны. Еще одна серьезная опасность - появление новых, устойчивых форм туберкулеза, для лечения которых дешевые препараты неэффективны.Хотя эффективное лечение туберкулеза само по себе не способно решить проблему СПИДа, оно позволит значительно снизить ущерб, наносимый эпидемией СПИДа во всем мире.


ВЫВОД

Итак, сейчас уже многим ясно, что СПИД - одна из важнейших и трагических проблем, возникших перед всем человечеством в конце ХХ века. И дело не только в том, что в мире уже зарегистрированы многие миллионы инфицированных ВИЧ и более 200 тысяч уже погибло, что каждые пять минут на земном шаре происходит заражение одного человека. СПИД - это сложнейшая научная проблема. До сих пор неизвестны даже теоретические подходы к решению такой задачи, как очистка генетического аппарата клеток от чужеродной (в частности, вирусной) информации. Без решения этой проблемы не будет полной победы над СПИДом. А таких научных вопросов это заболевание поставило много...

СПИД - это тяжелейшая экономическая проблема. Содержание и лечение больных и инфицированных, разработка и производство диагностических и лечебных препаратов, проведение фундаментальных научных исследований и т. Д. Уже сейчас стоят миллиарды долларов. Весьма непроста и проблема защиты прав больных СПИДом и инфицированных, их детей, родных и близких. Трудно решать и психосоциальные вопросы, возникшие в связи с этим заболеванием.

Всем привет, с вами Ольга Рышкова. В прошлый раз мы с вами разбирались, что такое мутации, как и где они происходят и вредны или полезны они для нас. А знаете ли вы, что благодаря мутациям среди нас есть 10% людей, которые ни при каких условиях не заболеют ВИЧ-инфекцией и СПИДом? Это люди с врождённым иммунитетом к ВИЧ. Как он у них появился?

Чем страшны вирусы?

Любой вирус, в том числе и ВИЧ, состоит из нуклеиновой кислоты и белковой оболочки.

Вирусы так пугают нас из-за мутаций и стремительной скорости их размножения. Частые мутации позволяют им ускользать от действия иммунной системы человека, она не успевает синтезировать антитела против новых и новых форм-мутантов вирусов, она перестаёт узнавать их.

Новые мутировавшие вирусы ускользают от действия иммунной системы человека и это позволяет им выживать. Из-за частых мутаций вируса иммунодефицита человека так долго работают над созданием вакцины против ВИЧ. Вирусы быстро становятся устойчивыми к лекарствам, что усложняет лечение.

Как действует ВИЧ?

Попадая в кровь человека, вирус проникает в клетки иммунной системы лимфоциты и там размножается. Под действием большого количества новых вирусов лимфоцит погибает, вирусы выходят в кровяное русло и проникают в новые лимфоциты, разрушая всё больше этих иммунных клеток.

Со временем клеток иммунной системы становится всё меньше и мы говорим, что иммунная система слабеет, иммунитет снижается.

У человека определённое количество лимфоцитов. Если не принимать никаких мер, не лечиться, ВИЧ разрушит это количество клеток за 8-10 лет. Дальше опухоли и инфекционные заболевания беспрепятственно распространяются по организму и на этом всё. Отвлекаясь от темы, скажу, что современная медицина не научилась уничтожать ВИЧ внутри лимфоцитов, но она замечательно это делает тогда, когда вирусы выходят из погибших клеток, не давая ВИЧ поражать новые клетки и сохраняя иммунитет человеку.

Наследственный иммунитет к ВИЧ-инфекции.

И вот в ходе исследований выяснилось, что 10% белого населения планеты имеют врождённую, наследственную, генетическую невосприимчивость к ВИЧ-СПИДу. Это значит, что ВИЧ может попасть в их организмы, но не может проникнуть в их иммунные клетки лимфоциты. Только в клетках вирусы могут размножаться, а в плазме крови иммунные клетки их обнаруживают и уничтожают. Люди с наследственным иммунитетом к СПИДу никогда ВИЧ-инфекцией и СПИДом болеть не будут! И всё потому, что им по наследству от предков досталась такая положительная мутация

Как же так? Откуда такая наследственность? Ведь ВИЧ нам известен меньше четырёх десятков лет, а мы знаем, что эволюции для закрепления и распространения мутации у людей нужны сотни и тысячи лет! И почему только у белых людей?!

Что это за мутация?

Людям, невосприимчивым к ВИЧ-инфекции достались от предков мутировавшие лейкоциты. У всех остальных на лейкоцитах содержится рецептор CCR5.

В этом месте ВИЧ проникает в клетку. Вирус распознаёт это рецептор и прикрепляется к нему. Они подходят друг другу как ключ к замку.

У предков невосприимчивых к СПИДу людей изменилась конфигурация рецептора CCR5, он стал другим. Этот мутировавший рецептор называют CCR5-дельта32.

Клетки людей с рецептором CCR5-дельта32 вместо CCR5 не принимают вирус. Когда вирус проникает в кровь и ищет, куда бы ему прикрепиться, у него ничего не получается. Этим людям не страшен СПИД.

Сама по себе эта мутация не имеет отношения к ВИЧ, это была случайная мутация. Она произошла, закрепилась и распространилась, когда этого вируса не было. Людям с наследственным иммунитетом к ВИЧ, можно сказать, просто повезло иметь такой рецептор на лимфоцитах.

Почему только у белых?

Это стало побочным эффектом средневековой чумы. В 14 веке чёрная смерть опустошила Европу. Она убила 40% населения. Ко времени начала пандемии чумы небольшая часть европейцев, примерно 1 из 20 000, уже имела мутировавший рецептор CCR5-дельта32.

И вирус чумы и ВИЧ проникают в иммунную систему одинаково, с помощью CCR5. Эпидемия чумы была долгой, люди с рецептором CCR5 умирали, а с рецептором CCR5-дельта32 выживали.

Среди выживших доля носителей мутации повысилась в 2000 раз (1:10) и теперь 10% европейцев имеют иммунитет к ВИЧ-инфекции.

Случайная мутация создала защитную стену против болезни и 10% европейцев могут не бояться СПИДа. Одни мутации оказывают сильное влияние на болезни, другие – никакого. Эта конкретная мутация возникла случайно и защищает людей от ВИЧ-инфекции. Посмотрите на карте, где распространена мутация CCR5-дельта32, позволяющая людям быть невосприимчивыми к ВИЧ-инфекции.

Этот механизм защиты от инфекции – ключ к лекарствам против ВИЧ. Есть такой препарат маравирок, он уже применяется для лечения ВИЧ-инфицированных. Принцип его действия в том, что он связывается с рецептором CCR5 и не даёт вирусу прикрепиться к этому рецептору и проникнуть в клетку.

Любое инфекционное заболевание у разных людей протекает по-разному. Ход болезни у конкретного человека определяется рядом факторов: общим состоянием организма и перенесенными ранее заболеваниями, разновидностью попавшего в организм микроорганизма, особенностями генотипа больного, наличием сопутствующих инфекций и т. п. Для большинства болезней статистика типичных симптомов и сроков их протекания не включает в себя случаи, когда заболевание прошло «мягко» или вообще бессимптомно. И хотя такие ситуации обычно выпадают из поля зрения медиков, именно они представляют особый интерес, потому что могут указать на неизвестные механизмы защиты от инфекций. В этом смысле не является исключением и печально знаменитый СПИД, на сегодня считающийся неизлечимым заболеванием.

Практически с самого начала эпидемии ВИЧ были отмечены редкие случаи, когда человек оказывался полностью устойчивым к вирусу либо носительство вируса у него не переходило в стадию СПИДа. Исследования показали, что «виноват» в этом поверхностный лимфоцитарный белок CCR5, а точнее, его отсутствие у некоторых людей.

Дело в том, что когда вирус ВИЧ попадает в организм, он стремится проникнуть в лимфоциты - важнейшие иммунные клетки крови, участвующие в защите организма от инфекций. Чтобы суметь проникнуть в лимфоцит, белок оболочки на поверхности вируса должен связаться с двумя клеточными белковыми рецепторами на поверхности лимфоцитов, одним из которых и является белок CCR5 (Deng et al., 1996). Оказалось, что некоторые люди являются носителями мутации, которая предотвращает синтез СCR5, и, соответственно, их лимфоциты оказываются устойчивыми к заражению большинством вариантов ВИЧ.

Могут существовать и другие механизмы невосприимчивости к ВИЧ, о которых мы просто не знаем. Так, коллектив французских ученых, работавший с группой из 1700 ВИЧ-инфицированных людей, недавно опубликовал результаты исследования двух необычных случаев устойчивости к инфекции, которые не были связаны с отсутствием белка СCR5 (Colson et al., 2014). В первом случае диагноз пациенту был поставлен еще в 1985 г., однако, хотя он и не принимал никаких антивирусных препаратов, стандартные анализы указали на полное избавление от вируса. Ни в крови, ни в культуре клеток крови этого человека не были обнаружены следы присутствия «живого» вируса.

Конечно, в первую очередь возник вопрос - а был ли пациент действительно инфицирован, или исследователи столкнулись с редкой диагностической ошибкой? Однако дополнительные анализы показали, что факт заражения имел место: в его крови были обнаружены антитела к ВИЧ и отдельные фрагменты вирусных белков, а также ничтожные количества вирусной ДНК, которую удалось определить лишь с использованием высокочувствительных методов.

Исследователи попытались заразить лимфоциты, взятые от этого пациента, «лабораторным» вариантом ВИЧ. Однако эта попытка не удалась, в отличие от контрольных лимфоцитов, взятых у других пациентов. В этот раз исследователи точно установили, что на лимфоцитах необычного пациента белок CCR5 присутствует, и поняли, что они имеют дело с новым механизмом блокировки репликации генома ВИЧ.

Возможный ключ к объяснению этого феномена был найден в тех небольших количествах вирусной ДНК, которые все же удалось выделить из крови пациента. Анализ их нуклеотидной последовательности показал, что этот вирусный геном просто напичкан мутациями. Мутированными оказалось около четверти кодонов , кодирующих аминокислоту триптофан, которые в результате превратились в стоп-кодоны, останавливающие синтез белка.

Собственно говоря, механизмы иммунной защиты, которые могли таким образом инактивировать вирус, уже известны. ВИЧ относится к вирусам с РНК-геномом, и чтобы размножиться, он должен пройти стадию обратной транскрипции, т. е. РНК должна превратиться в ДНК. «Перехватить» вирусный геном на этой стадии может группа клеточных белков из семейства APOBEC3G. Они «отрывают» аминогруппу (–NH 2) от цитозиновых нуклеотидов, превращая их в урациловые. В результате в геноме вместо комплементарных пар нуклеотидов «цитозин - гуанин» появляются пары «урацил - аденин». А поскольку в кодон триптофана входят два гуанина, их замена на аденин превращает триптофановый кодон в стоп-кодон (Sheehy et al., 2002).

Обычно ВИЧ удается обойти этот уровень защиты: у него имеется специальный белок, который атакует и уничтожает APOBEC3G. Но почему-то на сей раз этого не случилось, и весь жизнеспособный вирус оказался мутирован до состояния полной потери функциональности.

Предположив, что этот случай может быть не единичным, исследователи стали искать среди своих полутора тысяч пациентов со схожим анамнезом. И нашли! У этого человека также не удалось стандартными методами обнаружить ДНК- или РНК-вирусы. В крошечных фрагментах вирусной ДНК, которые удалось обнаружить у него в крови, также присутствовало большое число мутаций, схожих с теми, которые были найдены в первом случае. Однако лимфоциты второго пациента оказались неустойчивы к заражению «лабораторным» вариантом ВИЧ, поэтому не исключено, что механизм устойчивости к вирусу у него иной.

Многообещающим направлением этой работы является дальнейшее исследование механизмов устойчивости лимфоцитов первого пациента в экспериментах по заражению «лабораторным» штаммом вируса. Предполагается, что у этого человека имеется редкий вариант гена APOBEC3G, который ВИЧ не способен обойти. Но хотя это и было бы интересной находкой, такое открытие, скорее всего, не будет иметь широкого практического применения, поскольку пользу от такой мутации могут получить только ее носители. Тем не менее остается надежда на то, что при исследовании обнаружатся какие-то неизвестные ранее иммунные механизмы защиты, что даст толчок к разработке новых лекарств или методов предотвращения инфекции ВИЧ.

Авторы этой работы выдвинули также гипотезу, что в защите клеток от повторного заражения ВИЧ свою роль могут играть «фрагменты» вируса в виде коротких белков, образующиеся в результате досрочной остановки белкового синтеза на новых стоп-кодонах. Эти белки могут осуществлять защитную функцию либо, например, конкурируя с какими-то необходимыми для вируса белками, либо каким-то особым образом стимулируя иммунитет. Высказано даже предположение, что наблюдаемое явление формирования вирусной устойчивости - это естественный процесс эндогенизации ВИЧ, т. е. эволюционный процесс, в результате которого вирусная нуклеиновая кислота становится частью генома другого вида (в данном случае - человека).

Это предположение не так уж и фантастично: наши геномы полны «следов» древних инфекций - заражений ретровирусами, которые умеют встраивать свой наследственный материал в нашу ДНК. Ведь если в геном носителя встраивается не патогенный, а инактивированный вирус, который к тому же дает защиту против повторной инфекции, то он имеет намного большие шансы распространиться в популяции. И если начать масштабный поиск людей, которые несут вирус с большим количеством инактивирующих мутаций, то у нас появится шанс наблюдать эндогенизацию ВИЧ в реальном времени.

Литература:
1. Colson P., Ravaux I., Tamalet C. et al. HIV infection enroute to endogenization: two cases // Clin. Microbiol. Infect. 2014. V. 20. № 12. P. 1280–1288.
2. Sheehy A. M, Gaddis N. C., Choi J. D., and Malim M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein // Nature . 2002. V. 418. P. 646–650. DOI: 10.1038/nature00939.
3. Deng H., Liu R., Ellmeier W. et al. Identification of a major co-receptor for primary isolates of HIV-1 // Nature . 1996. V. 381. P. 661–666.

Кодон - единица генетического кода, представляющая собой тройку нуклеотидных остатков в ДНК или РНК, кодирующих одну аминокислоту.

Загрузка...